Canezants. 25 Denret to krt. 20.25 Cermeng Grectantian 5×75 Maymad Sosinfle way 30 seg wore

FEBRUARY 1981 60p

fterthought...or after thought?
nyou think about the adverse effects used regularly, you can be sure of ur tape head becoming magnetized pur tape head becoming magnetiz
inevitably will-loss of high inevitably will-loss of high
uency response and undue back uency response and undue back
ind noise - the solution becomes ous. Demagnetizatior lagnetizer is BSI roved, simple to use suitable for both reel Pel and cassette hines. A probe is ely brought to with head and held there ibout 3 seconds - so eis no risk of damaghe head itself. And, if

sucticphile Botition
Bib Hi-Fi Accessories Ltd
Kelsey House, Wood Lane End, Hemel Hempstead, Hertfordshire. HP2 4RQ.Telephone: (0442) 61291 Telex: 826437 BibHi.Fi Accessories Inc. 1751 Jay Ell Drive, Richardson, Texas 75081 USA. Telephone (214) 238 1224 Telex 792451.
BibHiFi Accessonies, 43 Birmingham Street, Alexandria, New South Wales, Australia 2015. Telephone 672750 Telex 20779.

wireless world

FEBRUARY 1981 60p

Wind meter

'Just detectable’ distortion

Morse decoding program

FREE PROJECT BOOK WITH APS NEW EBBO BREADBOARDS

WITH EACH EBBO IC-1 OR DC-1 STARTER PACK A FREE STEP BY STEP 10 PROJECT BOOKLET
ANYBODY CAN BUILD ELECTRONIC PROJECTS WITH EBBO MONEY BACK GUARANTEEIF YOU CAN'T

Three poweraces that give you the ultimate in breadboarding. Built in power supplies and a FREE logic
probe is built into MODEL probe is built into MODEL 102 $\begin{array}{lll}\text { POWERACE } 101 & 923221 & \mathbf{f 6 1 . 3 0} \\ \text { POWERACE } 102 & 923222 & \mathbf{f 9 5}\end{array}$ $\begin{array}{lll}\text { POWERACE } 102 & 923222 & £ 95.80 \\ \text { POWERACE } 103 & 923223 & £ 95.80\end{array}$

DIP-DIPマDIP-DIP-DIP JUMPERS
AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK
EX-STOCK DELIVERY
5 STANDARD LENGTHS
6, 12, 18, 24, 36'
WITH 14, 16, 24, 40 CONTACTS

- FULLY ASSEMBLED AND TESTED

INTEGRAL MOULDED ON
STRAIN RELIEF
LINE BY LINE PROBEABILITY

SINGLE-ENDE		DOUBLE-ENDED all prices 1-9 off. Huge discounts for quantit					
CONTACTS	24"	CONTACTS	$6^{\prime \prime}$	$12^{\prime \prime}$	$18^{\prime \prime}$	24"	36"
14	£1.67	14	£2.11	£2.21	£2.31	£2.43	£2.63
16	£1.89	16	£2.33	£2.45	£2.58	£2.66	£2.97
24	£2.74	24	£3.45	£3.62	£3.78	£3.9	£4.30
40	£4.38	40	£5.31	£5.61	£5.91	£6.22	£6.8

We can supply DIP, SOCKET, PCB, CARD-EDGE RS232, assemblies made-up,
tested, ready for use, cheaper than you can buy the parts ask for que

SUPERSTRIP SS2 THE BIGGEST SELLING BREADBOARD IN THE WORLD

When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you for ever, we give you a LIFETIME guarantee. SUPERSTRIP is the most used you more for you money ... With 840 contact points SUPERSTRIP accepts all IP's and discreu money ... With 840 contact points SUPERSTRIP accepts al ach SUPERSTRIP will take up and with eight bus bars of 25 contact points You should only buy a breadboard once so by the big any ot time. eller with a lifetime SUPERSTRIP SS2 923252 PRICE INCL VAT $£ 9.78$

TEST-CLIP TEST-CLIP

Clip an APTEST-CLIP over an IC and you immediately bring up all the leads from the crowded board into an easy working level.
22 NEW AP TEST-CLIPS TO PICK 22 NEV
FROM example

examples: TC $14 \quad 923695$ £2.76	TC 16	923700	$\mathbf{£ 2 . 7 6}$
TC			$\begin{array}{ccc}\text { TC 24 } & 923714 & \mathbf{£ 8 . 5 0} \\ \text { TC } 40 & 923722 & \mathbf{£ 1 2 . 8 8}\end{array}$

BASIC INTEGRATED CIRCUIT STARTER PACK

BASIC DISCRETE COMPONENT STARTER PACK
DC-1 Discrete Starter Pack $\mathbf{£ 4 . 6 7}$
All prices shown are recommended retail incl. VAT
In difficulty send direct, plus 50 p P \& \& P.
Send S.A.
. for a free copy Send S.A.E. for a free copy of
detailing our complete range. AP PRODUCTS, PO BOX 19, SAFFRON WALDEN, ESSEX, (0799) 22036

wireless
 world

FEBRUARY 1981 Vol 87 No 1541

Cutaway model of a capaci or measuring of a acrapapaci-
 the article on just detect N OUR NEXT ISSUE A range of counters for con satile Intersil ICM7216 i.c. satile intersil ocm modulues a a
From a set of
variety of instruments can variety of instr
be assembled.
Magnetic recording progress. Tape recording arged on by the papidy, popularity hi-fi reproduction. James equipment and tape coat ings.
Guide to s.a.w. devices fo
the professional applica ioons engineer, cover electrical characteristics and
applications of three s.a.w. types: bandpass filters.
delay lines and oscillators.

31 The new bureaucracy

32 'Just detectable' distortion
by James Moir
35 Wind speed and direction indicator
by N. Pollock
39 World of amateur radio

Business communications satellite Video cassettes levy Response to c.b. Green Paper

44 Morse decoding
by N. Kyriazis

Open channel frequencies	47 Letters to the editor Commercial broadcasting	The speed of light
51 T.t.I. logic probe by A. J. Jameson		
54 F.m. detectors - 2 by S. W. Amos		
57 Battery-powered instruments by lan Hickman		
62 Circuit ideas Gate tester Wide-range p.p.m. Programmable bandpass filter		

67 Interfacing microprocessor systems

71 Multiplex keying for organs - 2
by A. W. Critchley
77 Tellegen's theorem - some applications
by Hariy E. Stockman
80 New product

82 Sidebands

Ilectronic Brokers-Europe's Prem

SPYRANE

The
Electronic Brokers GUARANTE:

Unless otherwise stated all test equipment sold by us carries a 12 month warranty; For VDUs and Teletypes we offer a 90 days warranty, and computers are offered with on site acceptance and diasnostic tests (which may qualify them for independent ongoing maintenance). When you buy from Electronic Brokers you know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And
it's serviced by our own
highly qualified
technicians.

A copy of our Trading Conditions is available

 on request.

ier Test Equipment Company offer SID EOU PM original specs
February 1981..... Latest Test Equipment......

MULTIMETERS Avo. 8 MK 5 Muttmeter 20KR/volt $£ 70.00$ full lead kit . Test Set Number $1.20 \mathrm{~K} \Omega / \mathrm{Not}$ I, very robust	Philips. PM81 10 Single Channel Chart Recorder. 10 mV -10V $\mathbf{\Sigma 1 9 5 . 0 0}$ Racal. Store 4 Tape Recorder. 4 Channels FM, DC -	Telonik 2003 RF Sweeper System. $1-300 \mathrm{MHz} .5$ and 10 MHz marker's $\$ 950.00$ SOUND LEVEL METERS
Füliead kit	S.E.L	
	com	${ }^{\text {Ge }}$
	£11	
	C641 6 Channel Chart Re OV. 250 mm scan width	from 31.5 Hz to 16 KHz 1981 Sound Level Meter. $70-120 \mathrm{~dB}$. Di and analogue reading. Peak hold. A
$\begin{aligned} & 200 \\ & 100 \\ & 10 \end{aligned}$		iq8 Sound evel Meeer. 70 izab. A
		TRANSMISSION
		MEASURING EOUIPMEN
ger hold off 725.00	SIGNAL SOURCES Hewlett Packard.	
Phillips. PM13212 Dual Trade Portable Oscilloscope DC		
	d	
SEL	616 B UHF Signal Generator. 1.8 to 4.2 pulse Mod	
${ }^{432 \text { Uual Trace Portable Oscilloscope. } \mathrm{DC} \text { - }}{ }^{5510.00}$ 100 MH Z2. 5 mV . 5 V IIV. Fulu delayee 5 weep		
Juai Trace Porabibie ód	95.00	
	$86000+8601 \mathrm{~A}$	(ex
		rand
Ossoge		
	${ }_{\text {I2 }}^{\text {I2 }}$	
OSCILLOSCOPE PROBES EB90 X P Probe 1.2 mit length DC -		
	upto	-12. -110 -10 +1208
	TF 2002 OB AMFIF Signa Generator 88MHZ. O. 1 MV - IV	
		(eater
	E150.00	
ECORDERS		- Scanner, $\mathrm{R1-1/1}$ computer inereface.. 565500.00
	PMS127 Function Senerator 0. O HZ-1MHZ	
${ }_{\text {¢950.00 }}$	PMS5167 Function Senerator, IM-Z-10MHZ.	W-040
	E500.00	for further details
$\begin{aligned} & \text { Hoses } \\ & \hline \text { Eefata } \end{aligned}$	Tektronix. 2101 Pulse Generator. $2.5 \mathrm{~Hz}-25 \mathrm{MHz} .+$ and	

Electronic Brokers-Europe's Prem ier Used Computer Company offer SUPREAATVE USID Cow PUTER sil PM antas NEW Condilon

February 1981.......Latest Computer Equipment

WIRELESS WORLD FEBRUARY 1981

FAST ERECTING
GHRK MASTS
For World-wide Telecommunications in the 1980s

Clark Masts Ltd. are specialists in the design and manufacture of telescopic and sectional mast systems. With over 25 years' experience in supplying masts to meet exacting military and civil specifications we have the expertise you can depend on.
Extended heights $4 \mathrm{~m}-30$ metres capable of lif headload $1 \mathrm{~kg}-200$ Kgs., sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today.

INSIST ON

VERSATOWER

BY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of elescopic and tilt-over towers cover
range of 25 ft to $120 \mathrm{ft}(7.5 \mathrm{M}$ to 36 M).

Designed for Wind Speeds from 5 mph to 117 mph conforming with P3 Chapter V, part 11

Functional design, rugged construcna tolal versatility make it first choice for telecommunications

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, ac

A programme of continuous product development has led to a range of ver 50 models, all available at highly competitive prices. This scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER

THE PROFESSIONALS CHOICE

STRUMECH
VERSATOVNER SYSTEN

PORTLAND HOUSE, COPPICE SIDE BROWNHILLS, WEST MIDLANDS ww-O44 FOR FURTHER DETAILS

Why the Sinclair ZX80 is Britain's best-selling

 Built:£99.95 Kit: £7995Including VAT, post and packing, free course in computing.

This is the $Z \times 80$. A really powerful, full-facility computer, matching or surpassing other
personal computers at several times the price. 'Personal Computer World' gave it
5 stars for 'exclent 5 stars for 'excellent value'. Benchmark tes say it's faster
computers.
Programmed in BASIC-the world's most
col popular language--the ZXXO is suitable for
beginners and experts alike. And respons beginners and experts alike. And response
from enthusiasts has been tremendousfrom enthusiasts has been tremendous-
over 20,000 ZX80s have been sold so far! Powerful ROM and BASIC interpreter The 4 K BASICROM offers
remarkable programming remarkable programming
advantages
advantages
entry: the ZX -touch eliminates a great deal of tiresome
typing. Key words typing. Key words
(RUN, PRINT, LIST, etc.) have their own
single-key entry. * Unique syntax check

* Excellion ident stritieseserrors immediately - takes up to 26 string variables of any
length All length. All strings can undergo all * Up to 26 single dimension arrays. * FOR/NEXT loops nested up to 26. * Variable names of any length. * arithmetic, condition expressions, etc * Randomise function, useful for games and secret codes, as well as mor
applications.
Timer under program control.
* Timer underprogram control.
* PEEK and POKE enable entry of machine
code instructions.
High-resolution grap
* High-resolution graphics

Unique Ram
The ZX80's 1 K-BYTERAM is the equivalent of up to $4 K B Y T E S$ in a conventional computer-typically storing 100 lines of BASIC.
No other persona unique combination of high capability and ow price.

The $Z \times 80$ as a family learning aid. Children of 10 principles of computia
personal computer.

The Sinclair teach-yourse

 BASIC manualIf the specific If the specifications of the Sinclair
ZX 80 mean liftle to you-don't worry They're all explained in the specially-writte
128 -page book (free with every 7×8 -128-page book (free with every $Z \times 80$). The
book makes leaning easy book makes learning easy, exciting and enjoyable, and represents a complete
course in BASIC programming-from first principles to complex programs.
Kit or built-it's up to you
In kit form the
In kit form, the 2×80 is pleasantly easy to
assemble, using a a fine-tipped soldering iron And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal Both kit and built versions come complete with all necessary leads to connect to your
TV (colour or black and white) and cassette recorder. Plug in and you're ready to to go. (Built

personal computer.

 Now available for the ZX80... 7 New 16K-BYTE RAM pack

둠디맆

2×80

Science of Cambridge Ltd.
6 Kings Parade, Cambridge, Cambs., CB2 1 S

Massive add-on memory. Only £49.95. The new 16K-BYTE RAM pack is a complete
module designed to provide you-and your module designed to provide you-and your
Sinclair $Z \times 80$-with massive add-on memory You can use it for those really long and complex programs-or as a a personal
database. Yet it can cost as little as hal database. (Yet it can cost as little as half the other computers.)
For example, you could write an interactive or 'conversational' program to
show people what your $Z \times 80$ can do. With show people what your 2×80 can do. With
$16 K$-BYTES of RAM, they could be talking to your computer for hours!
Oryou can store a mass
Oryou can store a mass of data-perhaps
in a fairly simple program-such a a in a fairly simple program-such as a name
and address list, or a telephone directory. Ad by likking a number of separate programs together into one giant, but
modular, program, you can achieve the same effect ar soading severall programems at once.
Were also confident that it won't be long
before you can buy cassette-based software
using the full $16 K$ K-BTERAM. So keep an eye using the full 16 GK-BYTE RAM. So keep an ey
on the personal computer magazines - and on the personal computer mag
brush up your chess perhaps! The RAM pack simply plugs into the existing expansion port on the erear of the
ZX80. No wires, no soldering It's matter of ZX80. No wires, no soldering. It's a matter of
seconds and you don't need another power supply. You can only add one RAM pack to supply. You can wit your ZX80-but with 16K-BYTES who could want more!
How to order
Demand for the ZX 80 exceeds all other
personal compur personal computers put together! So use t
coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'Il
acknowledge each order by return, and tell you exactly when your ZX80 will be delivered If you choose not to wait, you can cancel
In your order immediately, and your money will be refunded at once. Again, of course, y
may return your $Z \times 80$ as received within may return your ZX80 as received within
14 days for a full refund. We want you to be
satisfied beyond satisfied beyond all doubt-and we have no
doubt that you will be. doubt that you will be.

To: Science of Cambridge, FREEPOST 7, Cambridge CB2 1 YY. Remember: all prices shown include VAT, postage and packing. No hidden extras. Please send me:				
aty	Item	Code	Item price	$\underset{\varepsilon}{\text { Total }}$
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor	02	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s) Price includes ZX80BASIC manual and mains adaptor	01	99.95	
	Mains Adaptor(s) ($600 \mathrm{~mA} \mathrm{at} \mathrm{9V} \mathrm{DC} \mathrm{nominal} \mathrm{unregulated)}$.	03	8.95	
	16K-BYTE RAM pack(s).	18	49.95	
	Sinclair ZX80 Manual(s). (Manual free with every ZX80 kit or ready-made computer)	06	5.00	

Ienclose a cheque/postal order payable to Science of Cambridge Ltd for £ -
Ienclose ach
Please print
Name:Mr/Mrs/Miss
Addre
FREEPOST-no stamp needed.

Take your pick from the SN series

Bang \& Olufsen's SN 14, 15, and 16 are versatile current and voltage supply units for use in the lab, production, workshop and training centers.

Which one you choose will depend on what you need. SN 14: O-20V $/ O-2 A$ remotecontrolable
SN 16: $2 \times 0-30 \mathrm{~V} / 0-1 \mathrm{~A}$ and $5 \mathrm{~V} / 3 \mathrm{~A}$
Bang \& Olufsen electronic instruments are also, wow/fluttermeters, oscillators, milliohmmeters, voltmeters and distortion meters.

UK agent: Danbridge (UK) Limited, Sherwood House, High Street, Crowthorne, Berkshire RG11 7AT
Tel.: (034 46) 2369 TLX: 847782

Bang\&Olufsen

DK - 7600 Struer
wW - 017 FOR FURTHER DETAILS

The New FM/AM 1000swith SpectrumAnalyser-we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter, modulation meter, signal generator wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

IFR precision simulators

Amcron INDUSTRIAL MUSCLE

Model - M600
\star POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
(CONTINUOUS R.M.S.)
\star D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVa .
\star HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW INTO 6 OHMS
PLUG-IN MODULES: CONSTAN
OUTPUT MATCHING TRANSFORMERS AVAILABLERATORS, AND MANY OTHERS.
F FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABALLY ANY LOAD.

* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
\star INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
\star 3-YEAR PARTS AND LABOUR WARRANTY.
For full details on all Amcron Products write or phone Chris Flack

Fortop performanceatlowpower change down toZN426 DtoA.
 You want a monolithic

 8 -bit digital to analogue converter for low power applications? Go for ZN426. It has on-chip 2.5 V precision reference and takes only 5 mA from a single 5 V supply.Ferranti DAC's give reliable performance and reduce costs.

Send for data or contact: IC Marketing,
Ferranti Electronics Limited,
Ferranti Electronic
Fields New Road,
Fields New Road
Chadderton,
Oldham, OL9 8NP. Telephone: 061-624 0515 Telex: 668038

FERRANTI
Semiconductors

CS1830 from TRIO

> NRD-515 recesing for the

NRD 515 SYNTHESISED HF MONITORING RECEIVER
NRD 515 SYNTHESISED HF MONITORING
NHD 515 MULTICHANNEL MEMORY UNIT
$£ 948.75$ inc. VAT $£ 161.00$ inc. VAT
$£ 27.60$ inc. VAT £ 34.50 inc. VAT CFL 260 600 Hz CW FILTER

PHILIPS METERS MAKE A FINE FAMILY

PM 2517 digital multimeter

* Full four digits
* Choice of LED or LCD display
* True RMS AC readings (AC
* coupled)
* Autoranging with manual override
* Curtio up to 10 A

Options inclucemperature and
Reader inquiry number 220

PM 2505 electronic analogue multimeter

* 62 measuring ranges
* High V and A sensitivity
* $10 \mathrm{M} \Omega$ input impedance

OSCILLOSCOPE VALUE STARTS HERE

PM 3207 dual trace
oscilloscope oscilloscope

* Ideal for service and
general
purpose
applications
* Linear resistance ranges to $30 \mathrm{M} \Omega$
* Automatic polarity indication
* Unique movement for high accuracy and repeatability
Reader inquiry number 221

Triggering from either channel or
external input

* Auto TV triggering
- Same sensitivity on X and Y channel
* B-invert facility

Reader inquiry number 222

PHILIPS INTELLIGENT COUNTERS-THE RESOLUTION FOR'8I

PM 6667 and PM 6668 high
resolution counters
$* 1 \mathrm{GHz}(\mathrm{PM} 6668)$ or 120 MHz

* (PM 6667) (eciprocal technique giving fast hi
* Reciprocal technique giving fast high
resolution measurements down to 10 Hz
* Auto triggering on all waveforms and duty cycles
* 15 mV RMS sensitivity
* High stability X-tal oscillators:
* Microprocessor control $\quad \begin{aligned} & \text { * Battery option } \\ & \text { Reader inquiry number } 223\end{aligned}$

LF PRODUCT WITH A SPECIAL TOUCH
PM 5190
LF synthesizer

* 0.001 Hz -
2 MHz frequency

* $\begin{aligned} & \text { interface } \\ & \text { ind }\end{aligned}$
standard for
total remote
* Microproc
indication

- BIG NEW CATALOGUE AVAILABLE

D ㄷ- The 1981 Philips fest

 TR- and Measuring Instrument Wits free 300 de Within its 300 pages are details and specifications of the full Philips range,Send for your copy by circling reader inquiry number 228. Distributors
Instruments
the exception of the pls in this advertisement, with ave exception of the pulse and LF equipment, are
aviable from Philp Service Centres. Telephone $01-6860505$ for. the address of your nearest branch.
The PM 2517 digital multimeter and PM 3207 Oscilloscope are also distributed by Wessex
Flectronics Ltd, 14.116 North Street Bristol BSII 55E. Tel (0272) 571404 . by mprehensivie sales and support service provided by the Philips Electronic Instruments Department
(see address below).

TWO EXAMPLES FROM THE WIDE

 PULSE RANGEPM 5716 pulse generator

* $1 \mathrm{~Hz}-50 \mathrm{MHz}$ repetition rate
$* 6 n s-100 \mathrm{mS}$ rise and fall times
$* 2 \mathrm{~V}-20 \mathrm{~V}$ amplitude within the range of
* Independent control for upper and
- lower pulse levels
* Pulse amplitude limiter to protect
device under test
- Built-in 50Ω backmatch
* Versatile facilities for externa
triggering, gating and pulse amplifying
PM 5705 pulse generator
* 0.1 Hz to 10 MHz frequency range
* TTL - compatible outputs, normal
* 1.0 V to 15 V into 50Ω for TTL, HNIL and MOS applications
* Baseline offset from 0 up to +2 V
* External triggering on positive or
negative slope: gating and single shot
negative slope: gating and single shot
facilities
* Education package 5705 E also available

INPUT
Use the inquiry service to obtain information about the products which intereest youtain Alternotivively 'phone on extension 145 or $/ 48$.
PM 2517 digital multimeter PM 2505 analogue multimete PM 3207 15 MHz oscilloscope PM $6667 / 6668$ counters PM 5190 LF synthesizer PM 5132 function generato PM 5705 pulse generator 1981 Test \& Measuring catalogue
Pye Unicam Ltd
Pilips Electronic ork Street, Cambridge CB1 2 PX, England
el Cambridge (0223)
38886
Telex 817331

Hilomast Lto

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON ESSEX CM9 TNB ENGLAND MALDON (0621) 5648

COMMUNICATION TUBES - EX STOCK

4-65A	5763	QQV06-40A
4-125A	6080	QQV67-50
4-250A	$6146 /$ A/B	QV08-100
4-400A	6155	QY4-15
4-1000A	6156	QY4-250
4CX250B	7557	QY4-400
4CX350A	8042	QY5-3000A
4CX1500A	QQVO3-10	\& MORE
4CX1500B	QQVO3-20A	

R/F POWER TRANSISTORS - EX STOCK

2N3375	2N5102	BLY33	BLY88
2N353	2N55590	BLY34	BLY89
2N3632	2N5591	BLY36	BLY91
2N3733	2N5641	BLL53A	BLY92
2N4040	2N5642	BLY55	BLY93
2N4127	2N5643	BLLY3	BLX13
2N4128,	2N6080	BLY84	BLX14
2N5000	2N6081	BLY85	BLX67
2N5071	2N6082	BLY87	BLX68
2N5090	2N6083		$\&$ MORE

LEADING EXPORTER
SEND FOR DETAILS TO: AERO ELLECTRONICS (AEL) L
GATWICK HOUSE HORLEY, SURREY, EN TEL: (02934) 5353
TELEX 87116 (AERO G CABLES AERO G TELEX HORLEY

WW-048 FOR FURTHER DETAILS

ExB120

L.E.D.s. 125 and . 2 1N4148 Diodes BED $1+100+1000+$ RED

YELLOW 08 . 069 . 058 | Or |
| :--- | :--- | :--- |
| GREEN |

CARBON FILM RESISTORS E12 SERIES
T.I. LOW PROFILE I.C. SOCKETS Prices per 100. Larger and Mixed
able. able. 25 W 100 off one type

500 off one type 1000 off one type type. $\begin{array}{cc}100 \text { off one type } & \mathbf{. 9 0 p} \\ 500 \text { off one type } & .800 \\ 1000 \text { off one type } & \mathbf{7 2 p}\end{array}$ | 5000 off one type | |
| :--- | :--- |
| $1+$ | .72 | 14

 Please add $£ 1.50$ handling charge and 15% V.A. We also stock transistors, diodes. TTL, CMOS, capacitors,

Farrison Bros. Electronic Distributors
22 Milton Road, Wostcliff-on-Sea Tel. Southend-on-Sea (0702) 32338
ww-011 FOR FURTHER DETALLS

CHOICE OF 3 PRIMARY INPUTS

 CUSTOMER DESIGN ENOURIIES INVITED. * CUSTTMER DESIGN ENOURIESSNVITED. FREEPOST facility.(U.K. only). .ess below. No STAMP REQUIRED. TO ORDER

TRANSFORMERS CANTERBURYCT2 TEP BELL HOUSE ROPER CLOSE

BULK EPROM PROGRAMMING

Isiton your desk yet?

P4OOO PRODUCTION
EPROM PROGRAMME
 catalogue - with the big company look that marks the new Verospeed - Fast becoming Britain's biggest distributor of branded electronic components. With a catalogue 3 times a year - a big company list of over 2000 products, many of them not found in other catalogues, and big company back-up, Verospeed still delivers that smallcompany response. All orders phoned in by 3.00 p.m. go out in the 5.30 post.

NEW NTHENEW C CATLOGUE
3M SCOTCHFLEX ${ }^{\circledR}$ IT'S CLICKED Verospeed now offers a choice of four Scotchflex
P.C.B. mounted Headers from 10 to 60 ways. A new pin P.C.B. mounted Headers from 10 to 60 ways. A new pin
ength ($3,94 \mathrm{~mm}$.) covers all P.C.B. requirements and both the right angle and straight pin versions are available with ong or short ejector ears. A full complement of Ribbon Cliple mounted Sockets, Polarising key and strain Reties
Change.
The IN 41612 compatible range of Connectors has The DIN 461612 compatible range of Connectors has
Thso
also been expanded to include the $64 / 64$ Cable and also been expanded to include the $64 / 64$ Cable and
Frame mounting Plugs and Sockets. The components Frame mounting Plugs and Sockets. The components
and tooling are all available "by return" from Verospeed Equipment Wire, Mains Cables, Ribbon Cables, Uniradio, Coax, Miniature and Standard Multicores. The widest selection at the most competitive prices. 154 product lines devoted to Equipment Wires and Cables
manufactured to BS and DEF Standards. Equipment Wire manuactured to BS and mEF Standards. Equipment Wire
section includes a 70.12 mm . PVC covered wire for small P.C.B. applications and E.T.T.E. Wire - a $120^{\circ} \mathrm{C}$ Tefzel
insulated wire which offers a low cost alternative insulated wire which offers a low cost alternative to manufacturer of Cables - B.I.C.C. - and are available via Verospeed's famous "by return" service.
Send for your copy of the one-off shop. Test our service by phoning 0703618525 before 3.00 p.m. - and your catalogue will be in the post tonight

Look for it in THE ONE-OFF SHOP

GP INDUSTRIAL

ELECTRONICS LTD.

 Unit 6, Burke Road, Totnes Industrial Estate, Totnes, DevonTelephone: Totnes (0803) 863360 sales, 863380 technical DISTRIBUTORS REOUIRED - EXPORT ENQUIRIES WELCOME ww-010 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for and special scales can be inade to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
Ww - 050 FOR FURTHER DETAILS Inererithle price!!!

World-beating Oscilloscope Offers Electronic Brokers
 ww - 055 FOR FURTHER DETALIS

Memories

$2114-300 \mathrm{~ns}$	$1 \mathrm{k} \times 4$ SRAM	$\mathbf{£ 2 . 2 5}$
$4116-200 \mathrm{~ns}$	$16 \mathrm{k} \times 1$ DRAM	$\mathbf{£ 2 . 6 1}$
$2708-450 \mathrm{~ns}$	$1 \mathrm{k} \times 8$ EPROM	$\mathbf{£ 3 . 6 0}$
$2516-450 \mathrm{~ns}$	$2 \mathrm{k} \times 8$ EPROM	$\mathbf{£ 7 . 2 0}$
$2716-450 \mathrm{~ns}$	$2 \mathrm{k} \times 8$ EPROM	$\mathbf{£ 7 . 2 0}$
$\mathbf{2 5 3 2 - 4 5 0 n s}$	$4 \mathrm{k} \times 8$ EPROM	$\mathbf{£ 1 8 . 0 0}$

Please add 50 p for postage-Prices exclude V.A.T. Send s.a.e. for price list.

STRUTT LTD.

ELECTRONIC COMPONENT DISTRIBUTORS MANUFACTURERS \& SUB-CONTRACTORS to the ELECTRONIC INDUSTRY

3c Barley
 Tavistock

Devon, England PL19 0JF
Tel. Tavistock (0822) 5439/5548
Telex: 45263
the indispensable

THRULINE WATTMETER
 0.55300 MHz / 0.1-10,000 watts

The Standard of the Industry What more need we say..

Exclusive UK representative

료 - electronics limited

2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR
TELEPHONE: 01-868 1188 - TELEX 8812727
ww-049 FOR FURTHER DETAILS
true as an 'ARROW' llul \longrightarrow

TELEPHONE - ELECTRONICS COMMUNICATIONS - ALARM SYSTEMS, ETC.,

Professional Wire and Cable Fastene
for all installation requirements.

SPECIAL PRODUCTS DISTRIBUTORS LTD
 wW-021 FOR FURTHER DETALLS

Price $£ 5495$ + vat (Post paid)
R.J.T. ENGINEERING LTD. 48 Mowbray Crescent
Stotofod, Hith
Tel. HITCHIN 7 Herts.
730069
rther details

WW - 070 FOR FURTHER DETAILS

PA;CE AP360 power amplifier

AP360 Stereo Power Amplifiers have been well-tried and proven in the music industry. They prove that combined in one amp.

Independent power supplies elminate crosstalk and ensure an accurate sound reproduction
Power Output. 180 Watts RMS per stereo channel,
into 4 Ohms.
AP360 (jacks)
AP360 (XLR)
$£ 170.00$
£180.00
(Incl. Carriage U.K. Mainland. Excl. V.A.T.)
Manufactured in England by:
PACE INDUSTRIAL
EQUIPMENT LTD.
Queen's Road, Royston SG8 5AO
Tel. (0763) 45321. Telex 817929
WW-065 FOR FURTHER DETAILS

DISPLAY ELECTRONICS

Would like to wish all their customers and business associates a Very
Happy and
Prosperous 1981

 8012A $3 \frac{1}{2}$ Digit LCD DMM with true RMS on AC volts and curren. C colts $200 \mathrm{mV}-1 \mathrm{KV}, 100 \mathrm{VV}$ resolution. AC volts 200 mV - 750 V ,
$100 \mu \mathrm{~V}$ resolution $\mathrm{DC} / \mathrm{AC}$ current $200 \mu \mathrm{~A}-2 \mathrm{~A}$, 1 A resolution $100 \mu \mathrm{~V}$ resolution. $\mathrm{DC} / / \mathrm{AC}$ current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ resolution.
Resistance $200 \Omega-20 \Omega \Omega, 0.1 \Omega$ resolution L ow resistance 2Ω and 20Ω, esistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 / 2$ resolution Low resistance 2Ω and
$1 \mathrm{~m} \Omega$ resolution conductance ranges $2 \mathrm{~ms}-20 \mu \mathrm{~S}-200 \mathrm{~S}$

Electronic Brokers
1=-

61-65 King's Cross Road London, ${ }^{\text {WC1 }}$ Tel $01-278$ 3461-Telex 298694 WW - 056 FOR FURTHER DETAILS

wireless world

The new bureaucracy

In the 1940s the construction of computer memory was difficult and expensive. So was the construction of a processor (then called a mill, or arithmetic unit). It was out of the question to cope with the technical problems of building a combined unit. The Von Neumann architecture was a
creature of these historical engineering constraints. The result was a list processor, and all problems to be solved by digital electronics had to be converted into a list of sequential steps. The people who did It is historically unfortunate that this Von Neumann architecture proved to be so versatile that it remained fixed long nough (1944-1980) for a glamorous mythology, and also a client society, the innocent of technology and also rather lacking in knowledge of the nature of the problems to be solved. This architecture has now been carefully copied, without improvement, into today's
microprocessor. The resulting situation, which we are encumbered with, is similar oo the man at the information desk in a railway station. He knows nothing about the technology of trains or railway lin networks, or that train times can be why you want to make your journey. All he can do is advise you on how to use the xisting schedule, which is very awkward indeed.
The programmer class became powerful enough to insist that the computer remain unchanged, and there has been no change in computer architecture for 36 years. Similarly, the railway information man would prefer the time-table and network of
ines to remain unchanged, but, unlike the programmer, he does not always have his way.

Programmers developed a glamorous view of themselves, and made heavy inroads into the media. From the
beginning they were very well paid, to sa beginning they were very well paia, to
the least. Borrowing from Marshal Me least. Borrowing from Marshal society to think that the essence of modern society was 'information processing', and even that the human brain was an 'information processor' following their own baroque, bureaucratic procedures.
This left them free to remain ignorant on the one hand of the technological nature of heir machines, and on the other hand to ake little interest in the customer's real problem, for which he wanted a mechanised solution. In classic style, the pureaucracy between machinery and problem to be solved, and insisted that ny link between the two must be via the mandarin language which was devised in he 1950s to try to make the best use of the slow, awkward and Neum.
This incursion of an informational bureaucracy between social needs and technological solutions is now likely to be
institutionalised by the setting up of a 'Minister of Information Technology' (December 1980 issue, News, p.46). In fact, there is nothing technical about the information explosion that technically uninformed programmers are busily Digital electronics is a very powerful branch of engineering with massive potential for social benefit, but it will be hampered in contributing to society's
needs until the technically uneducated, parasitic bureaucracy variously called information technology', 'computer science', 'information science' gets off its science and lets it get on with the job.

'Just detectable' distortion levels

Attempts to arrive at a practical criterion for assessing audio equipment
by James Moir, F.I.E.E. James Moir \& Associates

Are distortion levels of 0.1% really detectable when programme material is being reproduced? asks the author. of much greater value if information were available on the levels of distortion that were just detectable or just acceptable, he says. This artic characteristics which control the detectability of distortion to the ear, then reviews attempts that have been made to determine 'just-detectable' distortion, including a new technique devised by the author. Finally the what he considers to be 'justdetectable' distortion levels in various equip

Equipment suppliers generally provide a reasonable amount of information on the extent of the harmonic distortion intro-
duced by their amplifiers and tuners, though less frequently on loudspeakers and most other items of equipment. This distortion data is usually in the form of a
quotation of the total harmonic distortion (t.h.d), the r.m.s. sum of the individual harmonics. Typical values are generally in the range of 0.01 to 0.1% for amplifiers, 0.1 to 0.3% for tuners and around 0.5% for loudspeakers. Analogue record/repro-
ducer systems have much higher distortions, 3% to 8% being average values, even for professional equipment. On the reasonable assumption that low values of har-
monic distortion are desirable if 'clean' monic distortion are desirable if "clean'
sound is to be obtained, information about the t.h.d. is desirable.
The adoption of t.h.d. as an objective measure of subjectively judged distortion follows the international standardisation,
though it is appreciated that it is almost certainly the accompanying intermodulation components that are responsible for the 'objectionableness' of the distortion signal. In the majority of situations the total intermodulation distortion is directly
proportional to the total harmonic distortion, the relative values depending only upon the ratio of the amplitudes of the two test signals.
However the value of the manufactur-
ers' t.h.d. data would be greatly ers' t.h.d. data would be greatly increased
if information on the levels of distortion if information on the levels of distortion
that are just detectable or just acceptable were available. Are distortion levels of 0.1% really detectable when programme fier having 0.01% or 0.001% distortio
audibly 'cleaner' than one having a t.h.d.
of 1% ? This is the problem to which the present discussion is directed. It would be ideauld be the target. A more realistic ap proach would be to try and define the level of distortion that is 'just detectable' using modern equipment and critical listeners. The 'just detectable' level is a function
of so many variables that a precise speciof so many variables a single figure such as 1%, is unlikely to emerge from the discussion. Even in the simple situation where the test signals are single-frequency tones it is impossible to specify a single figure
without setting wide limits. An exper without setting wide limits. An exper-
ienced observer will detect the addition of a second or third harmonic when this is less than 0.1% but, given the opportunity to make repeated comparisons of the
distorted and un-distorted tone, he will lower the detection level by a factor of at least ten, so 0.01% distortion becomes detectable. But the 'just detectable' level of distortion in sinusoidal tones is rarely of more than academic importance and will not be given further consideration.
However, the same problem exists when attempting to detect the presence of distortion in a musical programme, if the test facilities allow a smooth variation of the distortion content the 'just detectable'
distortion (JDD) level continues to dedistortion (JDD) level continues to de-
crease with increasing experience and it is doubtful if any figure is meaningful with-

Fig 1 . Illustrating large variations of audio
signal level that can signal level that cang occur in musical
performances - for performances - for example betwe
points 1 and 2. (Chart recording of instantaneous levels during one minute of
"Molly on the Shore" by Percy Graingerl.
out providing full information on the test routine
The specification of the 'just detectable distortion in programme material is incontinuously varying in amplitude and in consequence the instantaneous value of th distortion is also varying continuously.
Fig. 1 is a chart recording of the instanta neous levels during a one minute period of 'Molly on the Shore' (Grainger) taken from
an Enigma recording No. K. 53574. Between points 1 and 2 the level will be seen to vary by at least 30 dB but this is not an extreme example, for records are capable
of handling a volume range of at least 50 of handling a volume range of at least 50 to
60 dB and this range is commonly employed.
If we
If we now look at some data on th variation of the distortion with signal out put of a typical amplifier and a domestic
type of loudspeaker, we get the results type of loudspeaker, we get the results
illustrated by Fig 2. If it is assumed that a maximum level of 95 dB at 1 metre is th highest level that will be reproduced it is seen that the distortion content is in the region of 3%. At a level about 30 dB lowe the distortion has fallen to less than 0.1%. distortion into the signal. If the sound level of 95 dB is achieved by a power output of 10 watts (a rather inefficient speaker) the distortion introduced is about 0.1% or les and it falls even lower at lower power out-
puts. Thus the distortion that is audible in the acoustic signal is practically all due to the loudspeaker and it varies over a range of about 30 to 1 when the acoustic signal
output various over a range of about 30 dB . (The numerical agreement is a coincidence.) Thus one has the problem of trying to decide what is the effective value of the distribution when it varies over a range

WIRELESS WORLD FEBRUARY 198
of 30 dB during a short section of the prodetectable is obviously a function of the distribution in time of the instantaneous amplitudes of the music. If the loud signals persist for a small fraction of tise toion that appear on loud signals will be less objectionable than if these loud signals occupied a large fraction of the few seconds ove which the brain is able to analyse the signa while still exposed to the mus pends not only upon the instantaneous value of the distortion, but also upon the length of time during which each burst of distortion persists. It appears from experiments on the fusing of tone pulses that the 10-20 milliseconds to form an opinion about the spectral content of a mid-frequency tone. At the low frequency end of the spectrum the processing time rises to anism that makes the hearing system oblivious to bursts of distortion of short duration,' the just detectable value increasing very rapidily as the duration of the distortion decreases.
We investigated this aspect using a
simple double zener clipper to clip sine wave pulses of variable length while listening on headphones for the just detectable distortion point. Fig 3 illustrates the results. It will be seen that the distortion due about 10% before it was detectable, but increasing the pulse length to 20 milliseconds reduced the 'iust detectable' distortion point to around 0.3%. As a conse quence it will be appreciated that pro
gramme amplitude indicating meters in which the deflection is a function of the peak signal amplitude indicating meters in which the deflection is a function of th peak signal amplitude (p.p.ms) rather than the average or r.m.s amplitude (VU meter) the amplitude of signal peaks that do no result in audible distortion. In many applications the use of a p.p.m. type meter ma only result in a redan the sign noise-to-noise ratio.
perhaps one peak having a duration of perhers one peak having a duration of
several seconds will sound 'dirtier' than a similar passage in which there are many peaks of the same amplitude, but each of
short duration, even though the total duration of the peaks is the same for both
passages.
However, there are other factors that are of significance. It is well established tha distortions of the simple amplitude de-
pendent type (harmonic and intermodula tion distortion) are less obvious when the distortion occurs at the low frequency end of the spectrum. The data quoted later suggests that the just detectable value o distortion at a frequency of 100 Hz is at
least ten times the just detectable value at frequencies in the 1000 Hz region. Thus the just detectable distortion is likely to depend not only on the distribution in time of the peak amplitudes in the music, but
also on the frequency band in which they
occur. Characteristically the sustained peaks occur in the low frequencies where the distortion introduced is less easily detected. Indeed it has even been claimed that distortion introduced in the low frequency region makes the music sound likely to appeal to the hi-fi purist.
There is also good evidence that the intermodulation distortions that result from second-order curvature of the trans-
fer characteristics are less disturbing subjectively than the distortions introduced by odd order curvature. All these considerations suggest that any simple single figure value that is quoted as an distortion in a system is unlikely to agree with a subjective estimate of the consequent quality deterioration, for the annoyance aroused by the presence of the distortion will depend on the order of the harmonic responsible for the major
proportion of the objectively measured distortion. In summary the just dectable distor tion depends on:

1. The ratio of the peak-to-mean ampli1. The ratio of the peak-to-mean ampli-
tudes of the signal during the effective tudes of the signal during the effective
listening interval. 2. The duration of each amplitude peak; ten peaks each lasting two milliseconds are less objectionable than one peak lasting twenty milliseconds in the same listening
2. The frequency band in which the maximum distortion occurs. Peaks of distortion at the low frequency end of the audio band are more difficult to detect than peaks of the same amp quency band.
3. The order of the harmonics introduced by the overload. Even harmonics and the resultant quadratic intermodulation distortion components are less objectionable than the odd harmonics and the resultan In spite of all these complications there have been many attempts to determine a figure for the JDD and these will be briefly considered, but the wide spread of the the intrisic the intrinsic quality of the sound systems
employed and the variation in the method of expressing the distortion necessitate great care in making any closely detailed comparison of the values.
Using a system claimed to be flat be-
tween limits of 40 Hz and 14 kHz , Olson suggested that the introduction of 0.7% distortion was just detectable, the JDD being the same for both even order and odd order distortion, a conclusion that is at by subequent investigators. Olson also noted that the JDD was doubled if the frequency range was restricted to 4 kHz , the possible basis for P. P. Eckersley' comment that "th"
more dirt gets in".
In his book 'Elements of Acoustic Engineering' published in 1940, Olson notes that: "Tests of music reproduction on a 8500 Hz at a peak level of 80 dB have indi-

Fig 2. Percentage distortion against soun
level for a typical 8-in loudspeaker and
amplifier.
 Fig 3. Detectable distortion vs. pulse length
for rurst of 1 kHz sine wave of variable length. Detectability depends on length of persists.
cated that 5% second harmonic and 3% cated that 5% second harmonic and
third harmonic are noticeable on a direc comparison with a system having less than 1% total distortion.'
In the late thirties the problem of deter mining the JDD was exercising the world' trying to fix some performance limits for trye telephone lines used for the international distribution of speech and music Braunmuhl and Weber in Germany and the BBC and Post Office Research Department in this country made very extensive ing extended to produce data on the sen sitivity of the hearing system to distortion when this distortion was confined to selec ted frequency bands. There is reasonable
agreement between the results obtained from both the investigations in finding tha around $1 \%-2 \%$ distortion is detectable when it occurs in the range above abou 500 Hz , but that the distortion may b
15% to 25% if it is confined to the frequency band below 100 Hz . Odd order harmonic distortions were found to be more
subjectively annoying than the even order distortions.
Some fifteen years later (1950) D.E.L. Shorter of the BBC Research Department systems for which the measured harmonic spectra were known. Comparing amplifiers having different harmonic spectra he
found that the just perceptible distortion found that the just perceptible distortion
was 0.4% in one instance and 2.6% in another, an illustration of the wide spread of distortion values to be expected in any quotation of a just detectable value. He obtained better agreement between subjec-
tive opinion and the objective measurements when he multiplied each harmonic amplitude by $n^{2} / 4$ before taking the r.m.s. sum. (n is the harmonic order.) The spread of just perceptible values was then reduced to 0.8% to 1.3% but it should be prevents his values being directly compared with the unweighted values obtained by other researchers.
Wigan (1961) made a very comprehensive investigation of the problem and came
to the conclusion that the subjectively to the conclusion that the subjectively
judged unpleasantness is a function of the time-rate-of-change of the departure of the signal from normality, but his results and conclusions are difficult to apply to a practical case where only the harmonic
data are available. They do, however, confirm the earlier suggestions that there are likely to be wide limits on any suggested value for the JDD.
More recently Fryer made a very thor-ough investigation of the problem using a
distortion producing technique that introduced only the first order intermodulation distortion components into a clean signal. Skilled male listeners could detect the presence of total distortion components of
about 2% to 4% in piano music and 4% to 5% in other types of programme. However his circuitry did not introduce the harmonic distortion that would inevitably accompany the intermodulation products if they were produced by curvature of the results obtained.
This is a very sensitive technique for determining the 'just detectable distortion" for after a few comparisons the subject begins to recognise the particular form of
distortion introduced into the music by the bias change. During subsequent comparisons the subject becomes increasingly sensitive to that particular distortion. After $10-15$ minutes' experience his sensitivity to the distortion has probably increased by a
factor of at least ten times As pointed out earlier in the actual distortion content in the reproduced music cannot be directly measured but it can be approximately indirectly. The peak-to-peak amplitude of the programme
material at the level at which the distortion was just detectable was marked on the oscilloscope face and a sine wave signal of the same peak-to-peak value substituted. This sine wave signal across the headphones was then analysed in the con-
ventional manner using a Marconi Type TF2330 narrow band analyser, all components up to about the 20th being separately measured. Fig. 4 indicates the amplitude of all the harmonics that were present and also reproduces the waveform of the sine
wave signal having the same peak-to-peak amplitude as the programme signal. If the r.m.s. sum of the harmonics is taken in the conventional manner it is 1.2%, or if weighted using the Shorter technique, is 15%. It is an interesting observation that when distortion on the sine wave signal was ' 'just detectable' visually it was also 'iust detectable' audibly
On examining the data from all the investigations and rather naturally giving
rather greater weight to our own results in view of the relatively recent date of the investigation, it would appear that the 'just detectable' level can be no lower than 1%. Indeed in view of the critical nature of our test technique, smoothly adjustable distor-
tion and repeated comparisons using the same test passage, it would seem unlikely that even experienced observers listening to a normal programme presentation could detect the effect of adding 1% distortion to
the signal. It would seem reasonable to suggest that Fryer's value of around 3\% distortion represents the 'just detectable' level in practice with limits in the range between 1% and 5%. If it in intended to be
ultra-critical our 'well below the detectable ultra-critical our 'well below the detectable
distortion' value of. 0.13% could be accepted as the desirable target.
With these values in mind it is interesting to see how all the individual items of equipment in a system measure up to this
standard. Amplifiers appear to be the only standard. Amplifiers appear to be the only
system component that have a performance that comfortably exceeds the 'just detectable' standard. Reasonably priced units can introduce distortions that are below 1% (40 dB down) at half their rated
output power. Amplifiers in the very top output power. Amplifiers in the very top
class, but still in domestic usage, have distortions in the 0.01% to 0.001% class ($60-80 \mathrm{~dB}$ down).

Wind speed and direction meter -

A windspeed and direction measuring instrument suitable for amateur onstruction is described. Although masthead use it is also suitable for land-based meteorological
applications. The novel masthead
transducer unit avoids the use of expensive commercial components easily by anyone with access to a small lathe.
A cockpit display of masthead windspeed and direction has become an essential fo or the cruising yachtsman. A number commercial instruments are available, bu hey tend to be very expensive. The main requirements for
ollows.
the masthead unit must be small, light
the number of wires coming down the mast must be reasonably small.

- both speed and direction systems should work over a speed range of about 1 knot to makes the indications unreliable, while at higher speeds it is only too evident what he wind is doing.
the direction display should have a resolution of 1°, at least over the range of 45°
port and starboard of head-to-wind. This is needed for fine tuning when beating to windward.
There should be a continuous 360° anal-ogue-type display of direction which can
be read at a glance in moments of stress, such as when gybing in a strong breeze. the system should operate from a 12 V accumulator with a low current consumpaccumu
tion.
To th
To the best of the author's knowledge, no instrument suitable for amateur con quirements has been described previously A number of wind direction indicator using simple 3 or 4 -bit optical encoders h appeared over the years, but they have
inadequate resolution. A high-resolution direction indicator with a limited angular operating range, suitable for close hauled use, is described in Reference 1 .

Operating principle
The most difficult problem in designing his type of instrument is the selection
iformation. Commercial 360° rotation ow-friction potentiometers, selsyns, reIl be eliminated due to cost and availabil ity problems.
The encoding technique adopted is one riginally described by Tyson ${ }^{2}$. The principle of operation will be described with reference to Fig. 2. A cup anemometer and
a wind vane, shown in Fig. 1, are mounted on a pair of coaxial shafts, which carry a pair of opaque discs with a small clearance between them. A fixed annular disc surounds the small-diameter direction disc. These three discs are shown separated in Fig. 2, for clarity. A light source is located photodetector, fitted above a hole in the fixed annulus, produces a pulse train as the circle of holes in the anemometer disc

Fig. 2. Operation of transducers. Annulus and upper disc are normally in same plane.

Fig. 4. Anemometer mounting and perforated
disc. 'Festoon' bulbs without end caps are use aluminium tube, the various discs being cut
from glass-fibre printed-circuit board. The clock track has 36 holes 1.7 mm diameter, equally spaced on a 40 mm diameter circle, the clock photodetector window in the fixed annulus is 1.0 mm diameter and all 1.7 mm square. The light source consists of two tubular, linear-filament, automotive tail-light bulbs with the end contacts removed to fit them in the available space. Ball bearings are secured in the end fittings and the shafts fixed in the bearings with an
adhesive such as "Loctite Bearing Mount". The spacing between the discs (about 0.4 mm) was set using temporary spacers between them while the adhesive on the shafts cured. This procedure avoids
the need to accurately machine bearinglocating shoulders. Adjacent faces of the discs were painted matt black, while the rear faces of the discs and the rest of the interior was painted white

The wind vane can be constructed from a variety of materials, the major require-
ments being that it should be of light weight and accurately balanced about its axis of rotation. A strong, well-balanced cup anemometer is difficult to make, so a and obtainable from chandlers wa adapted. This anemometer, which had mean cup radius of about 44 mm , was found to give a clock calibration factor of 22.5 hertz/knot. Since the system speed commercial or home-made anemometer could be substituted.

Power supply

A 9V supply was selected for the instru ment, since it can conveniently be derived from a 12 volt battery system. The circui of a suitable regulator is shown in Figure

Masthead circui

To provide high-level, low-impedance sig nals to drive the long wires down the mast, the three photodetector outputs are ampli-
fied in the masthead transducer unit. The necessary circuitry conveniently fits on a circular printed-circuit board which mounts on the direction end fitting, a shown in Fig. 5. The circuit of the mast12 V bulbs in series are operated so far below their rating that they should have very long life. It is desirable that the clock and coincidence amplifiers just swing to full output when the anemometer disc is
rotated slowly and the direction disc is in

Fig. 8. Circuit diagram of masthead amplifiers and signal conditioner. On 14 pin packages, $9 V$ goes to pin 14 , $0 V$ to pin 7; on 16 pin types, $9 V$ is on pin 16 and ov
on pin 8 . 100 n cerami capacitar should on pin 8. A 100 n ceramic capacitor should
be connected between $9 V$ and $0 V$ for every be connected
three i.cs.

WODLD OTFMMATEUTD DADIO

Fig. 7. Voltage regulator.
the position which gives the smallest coincidence output. If the mechanical design is changed it may be necessary to
change the values of R_{1} and R_{2} to achieve this situation. The $1 \mathrm{k} \Omega$ resistors on the amplifier outputs are to ensure amplifier stability under the capacitive load presened by the connecting cable.

Signal conditioning circuit The reference, coincidence and raw clock signals from the masthead unit drive the three comparators with adaptive triggering leves and hysteresis shown in Fig. 8 . changes, induced by ageing, temperature etc., in the amplitude and offset voltage of he incoming signals. The reference comparator drives a low-pass filter and a he different response speeds of the refer-
ence and coincidence photodetector systems. Without this compensation the measur.
speed. speed.
The hen drive an edge and coincidence signals then drive an edge-triggered RS flip-flop
constructed from a 4013 dual D flip-flop, the output of which goes high on the leading edge of the reference signal and signal. (The use of a simpler level-triggered flip-flop produced erroneous results when the two signals nearly coincided). An output from the flip-flop drives a 4528 dual monostable ms logic pulses needed by erates the two 4μ s logic pulses needed by
he direction circuit. The clock signal, which has one pulse per 10° of anemometer rotation, is multiplied by 10 , using a 4046 phase-lock loop and 4017 counter, to give
one pulse per degree of rotation. This one pulse per degree of rotation. This
CLOCK $\times 10$ signal is gated with the flip-

WIRELESS WORLD FEBRUARY 1981 flop output, using a 4016 analogue switch. quency ratio obtainable from a 4046 is about $50: 1$, which barely covers the design wind-speed range. To ensure reliable
operation, the 4046 timing and loop-filter operation, the 4046 timing and loop-filter capacitors are switched for high-speed and
low-speed operation, the switching being low-speed operation, the switching being
controlled by the SLOW/FAST logic signal derived from the speed-measuring cir cuit described later. The SLOW/FAST signal goes high when the speed drops
through 10 knots and low when the speed through 10 knots and low when the speed sures that the capacitor switching, which causes the 4046 to momentarily lose lock,
occurs only infrequently. Capaciors of C_{1} occurs only infrequently. Capacitors of C_{1}
and C_{2} are appropriate for a clock caliand C_{2} are appropriate for a clock cali-
bration factor of 22.5 hertz/knot. If the anemometer used has a different calibration factor, C_{1} and C_{2} must be altered in inverse proportion to the ratio of calibration factors.

References
 1. Pope, M. I. Apparent wind-direction indicator. Wireless World, April 1969, pp. 2. Tyson, G. R. A high-performance wind sensor using novel optoelectronic encoding. Proceedings of the Institute of Radio and Electronics Engineers, Australia, 36, No 11, Nov. 1975, pp. $365-368$,
 To be continued

Atlantic barrier

For British amateurs (as for Marconi) the Atlantic has always been considered the
single moss important hurde for radio sig single most important hurde for radio sig-
nals. The ability to bridge the Atlantic on each of the various frequency bands available to amateurs often seems to be what "DX" (long distance) is all about. Two
recent events have highlighted this special recent events have highlighted this special
cachet: one the happy event of the first caccee. ne sest spanning of the Atlantic by io-
succest nospheric reflection on 70 MHz (in a crossband 70 to 50 MHz contact since American amateurs are not permitted to use 70 MHz
and British amateurs cannot use 50 MHz and British amateurs cannot use 50 MHz)
by Gordon Pheasant, G4BPY, of Walsall; by Gordon Pheasant, G4BPY, of Walsal),
the other, a sad event, the death of J. W. ("Jimmy") Mathews, G6LL, an active amateur for more than 50 years and the first European amateur to make contact in October 1928 .

Firsts on 50 and 70 MHz . The $70 / 50 \mathrm{MHz}$ contact was made between G4BPY and Canadian NELASG (Si John, New Brunswick) on November 17 at 1627GMT.
Morse signals from the British stations on 70 MHz were heard weakly in Canada at a time when the Canadian 50 MHz signals were coming into the UK at great strength. Two-way contact was made and has since been confirmed

'Just detectable' distortion levels continued from page 34

Gramophone records reproduced by the best pick-ups can have distortions in the
$3 \%-6 \%$ range, but distortions in the 8% to 10% region are very typical of the best current records
Reel-to-reel tape recordings have t.h.ds
in the $2 \%-3 \%$ class but mater in the $2 \%-3 \%$ class but most of the distor-
tion components are due to the odd order harmonics. In general the distortion content of tape recordings has a much
simpler harmonic structure than the simpler harmonic structure than the
distortion spectra of a gramophone distortion spectra of a gramophone
recording. The distortion content of cassette recordings is about twice as high as in reel-to-reel machines but the variation beween nominally similar cassettes is much greater.
Typical current tuners have distortions
in the 0.2% to 1% class Indeed a live transmission generally provides programme material of the best quality available to the public.
Good loudspeakers of the monitor class can provide sound levels around 80 dB at 1
metre with distortions of about 0.3% in the mid-frequency range, rising to 1% or 2% at the low frequency end of the range. It will be seen that amplifiers are the
only units in a system that have distortions only units in a system that have distortions
that are well below the JDD value. Gramophone recordings appear at the bottom of
the distortion league table but this ranking should be greatly improved recorded pressings appear.
The distortions introduced by amplifiers of good design are so far below the 'iust detectable and so far below the distortion hat they appear to be of no consequence in practice. However it is relatively easy for the amplifier designers to obtain such low distortion levels and as this eases the job of
the designers of the other sysem units it is the designers of the other system units it is
worth while designing amplifiers for distortion.
The levels suggested as 'just detectable' are much higher than those generally con sidered to be acceptable, but there is little,
If any, engineering evidence to sugest that if any, engineering evidence to suggest that
values of distortion in the 0.1% region are really necessary. It should be remembered that it is the system distortion that is heard and that when the overall system includes any of the current record/reproduce links, the system distortion is in the $2 \%-3$
range, even using professional equipment It is the record/reproduce equipment that is the weak link in our sound reproducer system.
Return Returning to the opening question, it
seems unlikely that that have distortion levels around 0.01%
will sound any 'cleaner' than those having distortion a 10.1% but they so Finally it will be observed that the discussion is based on the assumption that the non-linear distortions, the harmonic and intermodulation components, are the primary distortions. T.i.m., d.i.d., s.i.d.
and most, perhaps all, of the currently popular esoteric distortions are not thought to be significant in equipment of professional or semi-professional standard
used as the designer intended.

[^0]the band virtually went dead for five or six
years.
Jimmy Mathews was the first recipient
of the RSGB's Wortley-Talbot Trophy, of the RSGB's Wortley-Talbot Trophy,
one of the Empire Link Stations of the 1930s and played a prominent role in the early technical publications of the Society Editor of the old "T \& R Bulletin". Al though not a professional engineer (his career was in banking) his technical exper tise and constructional ability were out standing. In 1941 he was one of the first of Farmyard" (the special Intelligence interception station at Hanslope Park) where he spent a number of years as an engineering officer. He remained an active

GB2RS news service

The weekly GB2RS amateur radio news in many parts of the UK are being listened to by about 2000 of the RSGB's 25,000 members, according to Basil O'Brien, G2AMV, 1981 president of the society. These self-help broadcasts, specially transmitted since September 1955 and the service was expanded during 1979. Some 1569 members responded to a questionnaire from which it is evident that of these on 144 MHz f.m., 207 on 144 MHz s.s.b and 27 on 7 MHz a.m. (the 7 MHz transmissions are intended primarily for listeners not having communications receivers) The survey showed that 1275 members enioyed satisactory reception indequate
with 157 who found reception inade The survey shows that this form of broadcasting to a specialist section of the community can be remarkably successful.

From all quarters

Some of the candidates who sat the Radio Amateur's Examination on December 1 claim that the multi-choice questions which more than one answer could be correct and that there were other ambiguities in what was clearly intended to be a testing set of questions. As a result of specific have agreed that question 37 in Part 2 of the paper could not be answered correctly the paper could not be answered correcty,
and the paper is being marked out of 59 questions only.
The VHF Committee of the RSGB is recommending that the frequency band
144.15 to 144.40 MHz should be reserved for s.s.b. stations seeking "long-distance" contacts while 144.40 to 144.50 MHz should be used for local and mobile operation with a local calling frequency at
144.40 MHz .

The British Amateur Television Club in $C Q-T V$ reports that a group of "narrow-
band tv" enthusiasts in Melbourne, Australia recently successfully transmitted 32 line pictures in the 1.8 MHz band to receiving stations in Adelaide (430 miles) and Sydney (470 miles)
In the UK, a 32 -line Nipkow-disc system
was demonstrated by Douslas Pitt at BATC's Leicester convention last September. Currently there are over 50 amateur tv stations in the UK transmitting fast-scan television on u.h.f. A group of
French and Swiss amateurs in the Geneva area are experimenting with 10 GHz amateur tv and have achieved distances of
$\underset{\text { John Tye, G4BYV of Swanton Morley, }}{25 \mathrm{~km} \text {, }}$ Norfolk can be well pleased with the re-
markable results he achieved during 1980 using home-constructed equipment on the 2.3 GHz ($1 \mathrm{3cm}$) band. His contacts on s.s.b. included SM6ESG, Sweden (869 km)
and OK1KIR/P, Czechoslovakia 866 k) and OK1KIR/P, Czechoslovakia (866 km). Many of the transistors he uses are "out-
of-spec" disposals. He produces an s.s.bsignal at 144 MHz and this is then mixed in a 2 C 39 A cavity with the 2160 MHz output from an oscillator chain starting at
90 MHz , then amplified in a further 2 C 39 A 90 MHz , then amplified in a further 2 C 39 A cavity stage with 42 watts d.c. input. His
receiver has an NE64535 low-noise amplifier, followed by HP35823 stage and interdigital mixer with HP2565 Schottky diode and i.f. output at 144 MHz . His 4 -ft diameter dish aerial is made from wire mesh with aluminium T ribs.
The RSGB has commented upon the
Government consultation document in which the proposal is made to levy a fee of ${ }^{830}$ on planning applications seeking permission to erect aerial masts. The
Society urges that either no fee or a purely Society urges that either no fee or a purely
nominal fee should be payable where the mast is intended for non-professional applications.
Radio-ZS, journal of the South Africa Radio League, reports that local amateurs are co-operaung with the South African the reception of tv pictures from the Russian Statsionar and Ekran series of geostationary satellites. These are located at around 55° East and 99° East and are using except for Ekran 3 on about 4 GHz The 700 MHz transponders use powers of up to about 200 watts. Despite the use of fre-quency-modulated vision signals, black-and-white pictures are being resolved in intended for amplitude-modulated vision provided that aerials of more than about 16 dB gain are used. Colour, however, is on the SECAM system and cannot be realized on PAL-type receivers as used in South Africa.

NIEWS OEF TMTE RMONTME

Satellite for business communications

Now in orbit is the first of a group of thre voice, video, high-speed data and facsimile se vices for American business firms and indust-
ries. Launched in November 1980, the satellite ries. Launched in November 1988, the satelilite
is called SBS, which stands for the name of its owner, Satellite Business Systems, a private
company iointly owned by IBM Corporation company jointly owned by IBM Corporation,
Comsat General Corporation and Aetna Life and Casualty. It is expected to begin commercial operations early this year

The spin-stabilized satellite was built by
Hughes Aircraft C nications sroup at CIt EI Sesyngndoa, california, and
was launched by Nat was launched by NASA on a Delta rocket into a
geosynchronous orbit at 106° West longitude geosynchronous orbit at 106° West longitude,
roughly south of El Paso, Texas. It is 7 ft in diameter and over 9ft high in its "stowed" posi-
tion, but when, in space, its solar panels are tion, but when, in space, its solar panels are
fully extended and its communications aerial is fully extended and its communications aerial is
raised it has an overall height of 21 ft 8 in . The raised it has an overall height of 21 ft 8 in. The
solar panels take the form of two concentric

Levy on blank video cassettes?
At the first meeting of the British Videogram
Association's Councii of Management, Donald Association's Councio of Management, Donald
MacLean of Thorn-EMI was elected Chairman
and Marice and Maurice Oberstein of CBS, Vice-chairman.
Peter Scaping will act as Secretary while the Peter Scaping will act as Secretar
Asociation is becoming established. Videogram producers are evidently expe-
riencing roughly the same problems as those in riencing roughly the same problems as those in
the audio recording industry; the Association's the audio recording industry; the Association's
priorities include consideration of the commer Criortites include consideration of the commer
cial problem' and 'an approach to Gov-
erment for a levy on the sules of blank vide ernment for a levy on the sales of blank video
cassettes... with a view to controlling the cassettes. \ldots with a view to controlling the
recording of ty programmes on domestic video recorders. When asked whether such a tax was,
perhaps, a little unfair on people who intended perhaps, a little unfair on people who intended
to use the tapes for other purposes, Michael to use the tapes for other purposes, Michae
Kuhn of Polygram, who chairs the working party on industrial relations and copyright, ex-
pressed the view that "'here's
'too bad'," Alternatively, he suggested, such
purchases could be exempted from tax if the signed a form at the time of purchase to the
effect effect that they had no intention of using the tape for nefarious purposes. Such a provision,
he pointed out, was common in libraries where one-off photocopying was permitted for the pur-
poses of poses of study.
Mr Kuhn went on to explain that the Asso Mr Kuhn went on to explain that the Associa-
tion was determined that in a "short time", the
Un tion was determined that in a "short time", the
UK would be the centre of video production and experimentation, the "hub of the video
industry", in fact. To atract video manufacturindustry", in fact. To attract video manufactur-
ers here, there would need to be rights agreements and unfair competition must be prevented. He saw home taping as unfair com-
petition on the same level petition on the same level as piracy and 'parallel
importin', which is the production of tapes in
In less strictly controlled countries and importa-
tion here. tion here. With the increasing expansion of Ceefax comes the added demand for a stable, bright
image for those who prepare the pages for transmission. These EV 6000 Series colour
picture monitors, at a price of about f1200 each, have been chosen by the BBC for use by picture monitors, at a price of about f1200 each, have been chosen by the BB.
the Ceefax journalists and are supplied by Electronic Visuals Ltd, of Woking.

cylinders, the outer of which extends nearly six feet downward in space. This capability yo ex-
panding in space doubles the spacecraft's solarpanding in space doubles the spacecraft's solar-
power generaing capacity over many previous
satellites. Improved solar cells capacity.
The electronics payload includes a highspeed, diectrol 10 -transpondorder system capable of and transmission make use of the $12 / 14 \mathrm{GHz}$ satellite band and in fact the SBS is the first US
domestic comercial satelilie to domestic commercial satellitet to operate at these
frequencies. The aerial beams, which are defrequencies. The aerial beams, which are de-
spun, ocver the continental United States, de-
livering higher spun,
livering higher power to metropolitan regions in
the East, Mid-West and West the East, Mid-West and West Coast where the
communications traffic for SBS's customers is greatest.
The second satellite in the series is scheduled for launch on a Delta vehicle in April this year, Space Shurtle in late 1982. By 1983 Satellite Business Systems also plans to establish an in-ter-city satellite telephone service connecting up
to 150 metropolitan calling areas. For use witit the castetlile areas. 10 earth terminals
are being built, also by Hughes. They will be are being built, also by Hughes. They will be
installed on the roofs of customers' buildins or installed on the roofs of customers' buildings or
on adjacent ground. Delivery has already on adiacent ground. Delivery has already
started and is expected to be completed in 1982 .

Data convention

Prestel goes international

Prestel, the public viewdata service of British
Telecom, is to add international data retrieval to Telecom, is to add international data retrieval to
its facilities in July this year. The decision to implement Prestel International, as it is called,
was made following the successful outcome of an international market trial which ra throughout 1980 . The trial involved more than
300 business users in seven countries and had the co-operation of the telecommunications authorities and carriers concerned. the pattern found most successful in the trial information for specific business sectors. These included shipping movements, investment sta-
tistics and commodity prices, pus a considertistics and commodity prices, plus a consider-
able use of private "closed user groups" in which organisations have exclusive use of cer-
tain parts of the information bank to meet their own needs. It will have a single database, which
will be quite separate from the one used fo will be quite separate from the one used for
restel in the UK. This will be updated by selected international information providers and British Telecom say it is designed to en-
hance and complement rather than compet with any national service there may be. The full iternational service, like the trial, will run on GEC computer will be commissioned towards the end of 1981 and will be located in the United States. Further computers will be brought into ervice in other countries, according to demand
Access to public information on the interna tional database will be available to users nor mally for the cost of a call on their own coun-
ry's domestic telephone network. Access to the ry's domestic telephone network. Access to th
private closed user groups will be available via the public telephone network or data links, a

in Europe

chat would give employees a night to know what
is going on in national and multinationat cor
hat would give employecs a menlitinationat cor-
is going on in national nad mut
porations. If adopted, the directive would requrations. If adopted, the directive woul re- managenens of corporations with quare cenal subsidiarices, as well as muttinational companies operating within the European Com-
munity, to provide regulat information to their munity, to provide regulat information to their
emplogees on matrers that directly affect them, nifkoding production plans, management langes, and emplat in trends.
ompanies have becomeme more complex, with
oubsidiaries or esthlishe conipanies have become more complex, with
subsidiaries or estabishments in a given counnry or even in several foreign countries, consulta-
tion with emplovees still tends to be conducted tion with emplopees still tends to be conducted
at local shop, plant or office level. Even leal a local shop, plant or office level. Even lecal
governments. let alone workers whose very ive-
lihoods mav be affected, are often ievorant of lihoods may be affected, are often ignorant of
the motives for action taken at higher levels. In general, also, disclosure of information to employees is confined to local business matrers so hat workers can only obtain a partial or incor-
rect picture of the aftairs of the company as a whole.
The proposal is in line with OECD and International Labour Office voluntary guidelines,
and with existing industrial practices in the community, as for example in West Germany, Beigium and the Netherlands. But the idea that
disclosure procedures should be mand hat disclosure procedures should be mandatory,
though wectcomed by trade unions, has so far aroused considerable misgivings among employers.
the national or
est computer. Although access will be possible from anyketing is to be restricted initially to the seven trial countries - Australia, the Netherlands,
Sweden, Switzerland, West Germany, the Sweden, Switzerland, West Germany, the
United States and the United Kingdom - plus United States and the United Kindom - plus
Hong Kong. Tariff levels for the full service,
which Hhich will be run on commercial lines, are being decided and
launch date.
The trial database used more than 20,000
pages of information, provided by more than 50
national and international organisations. These
included BP, ICL, ICI, Newsweek (USA), News Limited of Australia, and the Chase Manhattan Bank. Public service and government organisations included the Australian Depart-
ment of Productivity, the European Economic ment of Productivity, the European Economic
Community Commission, and the House of Lords library.
At present there are 11 countries (operating
national trial viewdata services, six of which national trial viewdata services, six of which
have Prestel computers and software and all of
which use the terminal standards applicable to which use the terminal standards applicable to
Prestel. It is expected that considerable use will be made of the developing packet switched data services, including Euronet (see News, Feb-
ruary 198 issue, p.58) and the International
Packet Switched Service.

Voice recognition for mariners

Because senior officers on ships don't readily
take to the idea of pressing buttons on keytake to the idea of pressing buttons on key-
boards but are used to barking orders at subor dinates, a seagoing version of Prestel viewddata has been equipped with a voice recognition
system instead of the usual keypad for interacsystem instead of the usual keypad for interac-
tive communication. The seagoing Prestel is,
called Seaview and its purpose is to called Seaview and its purpose is to give ships
officers immediate access to information avail officers immediate access to information avail-
able in shore-based data banks. Developed by a partnership between Siemens and Computer
Analysts and Programmers (AP), in collaborAnalysts and Programmers (CAP), in collabora-
tion with British Telecom, the Home Office, the tion with British Telecom, the Home Office, the
Departments of Trade and Industry and Liver pool Polytechnic, the Seaview system un derwent trials at sea off Dover last year, using.
150 of the pages available in Prestel. In a more recent test using avoiiable in in Prestel. In a more
command word "Dover") caused the display screen of a terminal to show all the informatio eld within Prestel on the Dover coastli

The voice recognition was developed by
Threshold International Electronics Ltd (formerly EMI Threshold Ltd and now a company in which Siemens has a maior sharecholding).
The analogue voice signals are first digitized and The analogue voice signals are first digitized and
then fed into a computer system which uses a then fed into a computer system which uses a
voice recognition algoritm developed as soft-
ware by CAP. The system depends on the user's ware by CAP. The system depends on the suser's
first recording 240 speech sounds on magnetic first recording 240 speech sounds on magnetic
tape, each sound being recorded ten times to tape, each sound being recorded ten times to
allow for variations in the production of the
speech. In operation speech. In operation the spoken command
words are matched against these stored referwords are matched against these stored refer-
ence patterns. More recently Threshold have
fied ence patterns. More recently Threshold have
field-tested a new voice recognition algorithm
called Quicktalk which recognizes semi-conneccalled Quicktalk which recognizes semi-connec-
ted speech and allows the speech input speed to ted speech and allows the speech input speed to
be doubled. (See also the section on speech
recognition and understanding in "Artificial Inrecognition and understanding in "Artificial In-
telligence" by Malcolm Peltu in the January
tige 1981 issue.)

The Doro 721 QA answering machine, recently launched by Ansamatic can act as a message taker, information giver, dictation/transcription and recording machine. It also has he ability to ask a series of questions of the caller, such as account number, address, goods required, delivery date, et

C.b. Green Paper
 CBA's response
 In response to the invitation extended by the Home Office in the Green Paper-discussion document Home Office in the Green Paper--discussion document Open Channel, the Citizens' Band Association has submitted a detailed Association has submitted a detailed reply with a letter to all MPs, offering them a copy with a letter to all MPs, offering them a copy and the loan of a 27 MHz receiver so that they can gauge the level of illegal use. The C.B.A.'s submission is of the Home Office eroposals which, the C.B.A. A . say, are didactic in tone, stating as fact a number of things which are no more than opinions. Out of 27 numbered paragraphs and opinions. Out of 27 numbered paragraph and sections, the C.B.A. finds itself in wholehearted agreement with only six and in qualified agreement with a further four. In common with what the Home Office say is the "vast maiority" what the Home Office say is the "vast majority" of over 12,000 submissions, the C.B.A. is not in favour of a frequency in the 928 MHz region on the grounds of its probable high cost and short range. It also mentions the possible danger to range. It also mentions the possible danger to health of such frequencies, particularly in handportable use. The Home Office is accused of "grossly verstating the problems of interference to televion and other users of the 27 MHz band. The C.B.A. claim that, in the ten countries where 27 MHz is used legally, there is some interference with other services, but say that

explain to whom it is quite tolerabale. It does not explain to whom it is quite tolerable.
The submission concluded with a call on the Home Office to announce a v.h.f. f.m. system
during Decemer during December 1980 or, if this is not possible,
to legalise the 27 MHz immediately, using the to legalise the 27 MHz immediately, using the
American 40-channel a.m. system unchanged. One feels that the C.B.A.A. have submitted a
somewhat intemperate document, which may somewhat intemperate document, which may,
for that reason, not carry with it the influence its for that reason, not carry with it the influence its
case deserves. In a written answer on December 18, Mr Win a written answer on December 18 , Mr that he was "disposed to allocate frequencincies to Open Channel Radio in the neighbourhood of
930 MHz ." This is in line with recommendations contained in the discussion documant
Open Channel', published in Aust Open Channel', published in August.
Since, on December Since, on December 17, the Home Office was
still engaged in correlating the 12,000-plus responses to the discussion document, it appears phat Mr Whitelaw has not felt compelled to pay excessive attention to the views expressed,
which were, accroding to the Home Office department doing the correlation, greatly in
favour of frequencies other than 930 MHz .

News in brief
Viking - the Swedish scientific satellite is to
be launched in 1984 to observe the magnetos be launched in 1984 to observe the magnetos-
phere above the north hemisphere. It incorpor-
ates a band-S ates a band-S (2 2 GHz) transponder supplied by
Thomson-CSF. The coherent transponder will Thomson-CSF. The coherent transponder will
receive remote-control instruction and telemereceive remote-control instruction and
try data and send back localisation signals.
The BBC was able to open their 22nd local radio station, Radio Lincolnshire, three days ahead of the scheduled date in order to broadcast a
service from Lincoln Cathedral attended by The service from Lincoln Cathedral attended by The
Queen and the Duke of Edinburgh. V.h.f. sigQueen and the Duke of Edinburgh. ...h.f. sig-
nals are transmited from Belmont and are of
mixed horizontal and vertical polarisation. mixed horizontal and vertical polarisation.
Medium wave transmissions are radiated from Medium wave transmissions are radiated from
Lincoln, providing a daytime service up to a
radius of about 20 miles. A more powerful radius of about 20 milis. A more powerful medium wave tran
about a year's time.

Radar simulators are needed to help train
operators in control procedures. Marconi Radar operators in control procedures. Marcon Radar simulators, as supplied to the RAF recently, are
designed to produce a very realistic situation for trainee operators, and in the course of complex tactical situations which are set for executive of airspace activity can depict any type of airof arrspace e cativity can depict any type of air-
craft or and armament as well as geographical or meteorological factors. The equipment in-
terfaces readily with all types of display and terfaces readily with all types of display and
communications equipment. It can be set up either on its own or can be added to an opera-
tional radar system, when it may be used withtional radar system, when it may be used with out interfering with the operational readiness of
the system.

Electronic Brokers Ltd, who market second hand test equipment, minicomputers and peri vice have recently moved to new premises at 61 vice have recently moved to new premises at 61
65 Kings Cross Roadd London WVCIX 9LN
Their telephone number is $01-2783661$. Underlining the conclusions of the Photovoltaic
Solar Energy Conference, held in Cannes, that
solar electrical systems is one of the fastest solar electrical systems is one of the fastest growing 'alternative energies', Lucas Energy
Systems Ltd have recently landed a $£ 2$ million contract to supply batteries with solar and mains
chargers for about 600 sites in Algeria.

Audio 81 hi-fi show is to be held at the Holiday nn, Swiss Cottage, London, from 3 p.m. on Friday 5 . February to 6 p.m., Sunday 8 it Ferruary. It will remain open until 8 p.m. on
Friday and Saturday. The sponsors, Audio T Fnd A T Labs, promise a complete cross section
of the hi-fi industry from the large Japanese of the hi-fi industry from the large Japanese
companies to the smaller enthusiast British companies to
nanufacturers.
Harmonized electronics standards. As part of the continuing policy of harmonizing the series
of standards produced in conjunction with the Standards produced in conjunction with
European Committee for Electrotechnical Stan
dardisation, the BSI have published BS CECC 11000 Harmonised system of quality assessment for electronic components:s generic specification: ca-hode-ray tubes and BS CECC 12000 Harmonised nsems: generic specififacation: image converter and image e intensifier tubes. Both standards give the
terminology, quality assessment procedures, terminology, quality assessment procedures,
test and measurement conditions for the entire families of the products. They are available from BSI Sales Department, 101 Pentonvilla

More satellite communications for shipping

A new global satellite communications system is
being set up to meet the growing international being set up to meet the growing international
telecommunications needs of the world's shipping and offshore industries during the
1980s. Initiated by the International Maritime 1980s. Initiated by the International Maritime
Satellite Organisation in November, it involves Ste
the leasing of two odedicated ESA satellites, Ma-
recs A and Marecs B, as well as three Intel V Vat satellites with Maritime Communication
Subsyster Subsystem packages and one Marisat satelitite of
the Comsat General Corporation. The system hhe Comsat General Corporation. The system
will provide coverage of the Atlantic, Pacific
and Indian oceans and will will provide coverage o the At act as a follow-
and Indian oceans and will also act
on to Comsat's existing Marisat system. Transion to Comsat's existing Marisat system. Transi-
tion from Marisat to the new system is expected to be made in early 1982 .
The decision by Inmarsat involves contracts to three major suppliers -
Comsat - worth 180 million US dollars over Comsat - worth
the period 1982-89.
A second major decision made by Inmarsat is
on the space segment portion of charges for the on tepe space aegment pervics. The final rates to
telephony and telex servics. end-users of Inmarsat sevices will now be determined by telecommunications administrations
who are signatories to Inmarsat. These rates will who are signional charges for the use of the coast
reflect addition reflect additional charges for the use of the coast
earth stations of the telecommunication admin-
istra istrations, as well as any landline extension
charges. charges.

The coast earth stations of the present Marinew system in 1982. They are the Comsat stations in Southbury, Connecticut and in Santa Paula, California, USA, and the Kokusai
Denshin Denwa Co. Ltd (KDD) station in Yamaguchi, Japan.
Other stations expected to operate in 1982 Other stations expected to operate in 182
include: a second KDD station in IIaraki; ;the
Norwegian Telecommunaication Adminitr Norwegian Telecommunication Administra
ion's station in Eik; the Ministry of Commuion's station in Elik; the Ministry or Comm
nications of Kuwait station in Umm-Al-Aish; the Singapore Telecommunications Administration station; the Italian PTT's station in Fucino
and the British Telecommunications station in and the Br
Nine additional coast earth stations are planned, or under study for operation in 1983,
while another dozen are similarly under consideration for the post-1984 period.
Inmarsat has also selected KDD of Japan and He Communication Satellite Corporation of services. Thespe services, stations in Ibaraki and Yamaguchi in Japan and in Southbury, USA, will control and coordinate the traffic chrough the satellites in the
Pacific, Indian and Atlantic Ocean regions, respectively.

Racal-Decca in Transit

The cost of marine navigation by satellite is drastically reduced by the introduction of Racal-
 between passes are around 2.4 hours average (4

 drastically reduced by the introduction of Racal-Decca's new DS4 sat-nav receiver. At $£ 3,000$, Dene technique can now be used by small ships and pleasure crant, while its performance is such
that it is well suited to use by vessels such as that it is well suited to use by vessels such as
supertankers supertankers.
The satellite system used in the US Navy
Navigation Satellite System Navigation Satellite System (NNSS), now
known as Transit - a system five satellites in known as Transit - a system of five satellites in
polar orbits which transmit on 400 MHz . Position is obtained by Doppler measurements on
the satellites carried out in the receiver each the satellites carried out in the receiver each
time a satellite is over the horizon and in a time a satellite is over the horizon and in a
usable position relative to the ship. Intervals hours maximum) so that the position between This is also performed by the receiver using Displayed information. includes latitude longitude, time, date, heading and speed, and he user can ob aiain the coarse and distance to en waypoints and information on the next
satellite passes to enable him to plan the voyage. Under normal ionospheric conditions and with
an error of 0.2 knot in is peed the nerror of 0.2 knot in speed, the receiver wil
determine position to within 0.05 nautical
files determi
miles.

Computer network aids astronomers

Intelsat V launched

geostationary communications satellitites, was placed in its permanent orbit, it will take position 21.5° west over the equator During 1979, around twenty million teleHone calls were made between the UK and
USA, and the number rises by over 30% per year. Each new set of communication satellites must have increased traffic capacity to cope with apacity of an Intelsat IV. It can handle 12,00 elephone calls and two television channels
Five of the nine Intelsat V satellites, which
will be launched at intervals up to 1983, are to carry facilities for ship communication, forming
part of the global system operated by the International Maritime Satellite Organization (In marsal).
The new satlites are not spun for stability, but employ flywheels and earth/sun sensors to maintain the structure in the required attitude. ${ }_{4-6}^{11} \mathrm{GHz}$ band, which is less congested than the $4-6 \mathrm{GHz}$ band - also used in Intelsat V. Similiar
frequencies can be used for different purposes frequencies can be used for different purposes
by aiming the beams in widely divergent directions at heavy-traffic regions on the earth, and
by cross-polarizing the transmissions.

VDUs get clean bill of health - almost According to a research paper published by the
Health and Safety Executive, visual display units used commercial process and business
machines are not a risk to the health operatives.
The level of radiation of all wavelength equipment are said to be insignificant compared equipment are said to be insignificant compared
with national and international limits for continuous exposure, in both shord and long term,
although no figures are quoted. although no figures are quoted. One area in which the paper does admit cause
for concern is the possibility of epilentic attack being precipitated in certain circumstances Since the majority of peeple who suffer from
enilepsy have their first epilepsy have their first seizure before the age of
20 , it is assumed that a first attack is unlikely to be triggered by a v.d.u, but for those who are
known to be prone to phosensitive epile known to be prone to photosensitive epilepsy,
there is a risk, as there is with a large-scre theme is a risk, as there is with a large-screen
domestic tevion set. It is increased by
prolonged close-range prolonged close-range viewing and, in particu-
lar, by 25 Hz interlacing, which is used in both lar, by 25 Hz interlacing, which is used in both
television and character-enhanced (rounded) v.d.us. Photosensitite epenheptics are (rounded) to
seek medical advice before working with v.d. us.

A network of computers has been set up at six
centres in the UK to provide and coordinate
image processing and data reduction for image processing and data reduction for British
astronomers. Called the Starlink network, it is ontrolled from the Science Research Council's ries, Chilton, Didcot, Oxfordshiete LaboratoAstronomers in Britain now have access to a
wide range of telescopes operating at all wavelengths, on the ground and in space. These are equipped with instruments that produce data in
the form of large digital arrays so there is now a pressing need for powerful data processing duce the data manually or devise their to data processing systems. The modest facilities hat did exist could be used by only a few astronomers and were heavily over-subscribed, partidata was demanded. In the 1980s most astronomy will be done using data in digital form and

The Starlink system is cased on six Digital
Equipment Corporation's VAX $11 / 780$ compuPost Office lines. Each computer support using mage displays. The display system ussed, the
Advanced Raster Graphics System (ARGS) made by Sigma Electronics, will show colour mages consisting of a matrix of up to 512×512 lictures, transform the colour mappings to re, generate lines and other parts of the pic perform other such functions. Each of thes workstation' consisting of the ARGS, a graphic erminal (for spectra, intensity plots, etc) and v.d.u. from which the user controls the system. program development.
Through the netw
hrough the network the astronomer will also camera systems to produce colour prints and
slides of astronomical objects.

Morse decoding

A machine-code program for decoding Morse transmissions on a home computer
by N. Kyriazis

Decoding Morse by means of a

 Decoding Morse by means of acomputer is a fairly simple matter and many programs have already been as the TRS 80 . This article describes such a program, which was written in machine code for the Z80-based Wireless World scientific computer. The main advantages offered by this
program are that it can be used to decode either machine or manually produced Morse and that it provides a certain amount of immunity to the effects of noise and interferen
reception, which would norma
cause unacceptable decoding errors.
To minimize the effects of poor sending nd to ensure reliable decoding from features have been included in the program.
The ability to recognize and reject the effects of short-lived interference, such as that generated by ignition systems. short gaps in the transmission which may occur as a result of the type of interfernce described above. (These gaps may not occur in more advanced receivers
limiters.)
Generous tolerance for the definition of dits, dahs, characters, spaces, etc., to ater for the different "fists" of c.w operators.
The provision of simple 'filtering' of he effects of noise on weak signal dur ing fades.
Program description
The program compares the time lengths of mark periods, i.e. periods of tone outpu from the receiver, and space periods, i.e. periods of no tone output, with a predeter is, of course, the audio frequency generated by the receiver in the c. w gode usually around $750-1000 \mathrm{~Hz}$. This audio output from the receiver must be onverted to a logic-compatible signal, so of the five serial inputs. Bit 1 was used in this application, but any other bit may be used if required by modifying the masking instruction following the IN instruction, details of which will be given later. The defined as follows.

- A dit has a duration of one unit of time.
- A dah has a duration of three units.
- Elements of the same character are spaced one unit apart.
Words are spaced at least five apart: apart.
To make the program tolerant to sending errors (bad "fists") and to minimize the effects of interference, as mentioned earlier, the time unit values for modified as follows:
- A dit becomes a mark period which is between one half and two units long. two or more units long.
An inter-element space. is from one half The space between charact one and a half to four units long from Words have a space between them of four units or more.
A maximum limit of eight units length is placed upon the dah by the program as will ess than one half unit long are regarded the result of interference and are dealt with ccordingly by the program.
It may seem initially that there is to much tolerance in the definition of these basic Morse elements as, for example, a dit
has a range of $4: 1$ in time duration. It has been found, however, that this method works well in practice and most hand-sen Morse is decoded accurately. The regard-
The program in machine code

ing by the program of mark units of less than one half unit as interference reduces to a large extent the tendency to display the letter E as a series of Es under interference conditions. Similarly, the minimum
limit of one half unit for a space results in fewer errors during periods when the output signal from the receiver is weak and reaches the minimum limit required to perate the interface circuitry
Before giving the detailed description of
he program, here is a list the terms used in the accompanying flowchart: MARK - a counter used for measuring the duration of "tone" output from
the receiver which corresponds to the keyhe receiver which corresponds to the keyregister of the Z80. SPACE - a counter used for measuring the "no-tone" or keyup time which is represented by the L egister of the Z80. UNIT - used to hold he current basic time unit of the Morse inter-element space, which is represented by the B register of the Z80. CHAR - is the variable that holds the HEX equivalen o Morse character after it is converted by the program. A dit is represented by a initial value of CHAR before any element are inserted is HEX01 and elements are iserted by shiftung CHAR one bit to the ff first so that no ambiguity results. For will be HEX 06, and the character dah (A) it $\operatorname{dit}(\mathrm{Z})$ will be HEX 13. CHAR is repre sented by the C register of the Z 80 .

WIRELESS WORLD FEBRUARY 1981

The main program depicted in the flow input to the computer from the receive interface and to determine whether a mark or a space is being presented (in this case
the interface gives a logic " 0 " when a tone ise interface gives a logic " 0 " when a tone tone) and another to display the decoded Morse character. More details of these subroutines will be given later in this des ription.
program starts by clearing the MARK and Program starts by clearing the MARK 00 , seting the UNIT to HEX OC (corresponding to about 17
w.p.m.) and the CHAR to 01 (one space) Next, the TEST INPUT subroutine called and if the input is a mark, the MARK is incremented. If the mark value reaches eight units the program will wait the start and reset. Hence, mark periods are limited to eight units and if one tunes oo the calibrator of the receiver the program resets automatically as it sees a the mark does not reach eight units the MARK counter is incremented until a pace is encountered. The SPACE counte
not reach one half unit in length, it is egarded as a break due to interference and ts length is added to the mark period. he space count does reach a length space, so the program checks whether the mark is greater than two units and if so inserts a dah (logic " ${ }^{0}$ ") in the CHAR egister. If the MARK is not greater than MARK counter is now reset 00 and the program enters the SPACE count sequence at block D.
The SPACE counting sequence that

MARK sequence as far as the handling of short mark periods is concerned but when a valid mark is encountered, i.e. a mark of more than a half unit long, it checks
whether the SPACE count is less than one whether the SPACE count is less than one units long, the space is regarded as an in-ter-element space. The value in SPACE is added to the UNIT, the sum divided by This results in an exponential adjustment of the UNIT towards the value representing the incoming speed. This allows the program to adapt automatically to the speed of the sender, provided it is not less than two thirds or greater than two times space is greater than one and a half units then it is regarded as a character space and the display subroutine is called. The SPACE is set to 00 and the program enters the MARK counting sequence again a
block B If the SPACE count reaches four units then it is regarded as a word space and if the content of CHAR is not 01 (no elements inserted) then the character is v.d.u. The SPACE count is set to 00 and then the program waits for a valid mark (more than a half unit long) before it exits to the MARK sequence at block B. If the reaches a count of more than four units then nothing is displayed and the program waits for a valid mark before continuing. This is to avoid the printing of spaces
under some interference conditions that under some interference conditions that cause the space to reach four units wR And now, here are some details of the two subroutines used by the main program. All TEST INPUT question blocks use a subroutine that has the folreceiver interface is input to the accumulator and masked by an AND instruction to retain only bit 1 . Next, the contents of the accumulator (which will be either HEX 02 or 00) are added to the C register which stack and than set to 00 on entering the subroutine. A time delay of about 1 ms is now called and the process repeated five times. Hence, the C register will contain a number which will be 00 if all the samples of the input were logic "0", or 0 A (10
decimal) if they were all logic " 1 ". If the input changes state during sampling then the C register will contain a number equal to twice the number of "1s" input. The content of the. Cregister is compared to a
fixed number (HEX 06) and the subroutine returns to the main program with the carry flag set if there are less than three logic " 1 " inputs or reset if there are three or more "ls". Thus, the main program
uses a Jump on Carry (JRC) to go to the uses a Jump on Carry (JRC) to go to the
MARK sequence or a JNRC for the SPACE sequence (the receiver interface gives a logic " 1 " for no tone and a logic " 0 " when a tone is detected). Taking five samples of the input provides some immunity to noise during
terference conditions.
The display of characters is handled by
another subroutine which checks to see positions of a line points to the last eigh character is a space the next two lines are cleared and a new line called to avoid split ting words and to keep the display tidy table to find is made through the Mors HEX code for the converted character which is then sent to the v.d.u. for display. If a HEX code outside the table is presen-
ted an asterix will be printed ted an asterix will be printed. The Morse
table contains the characters from A-Z numbers from $0-9$ and the following auxiliary characters; full stop, comma, question
mark, semicolon, oblique ($/$, break ($-($, mark, semicolon, oblique (() , break $(-)$,
double-break $(=)$, end of transmission double-break $(=)$, end of transmission
$(\#)$, end of work (<), wait ("), colon and parenthesis.
A machine language listing is given in
the standard WW scientific the standard W.W. scientific computer format starting at 0 CO 00 . The TEST IN-
PUT routine is at 0 C 95 and the display PUT routine is at 0 C 95 and the display
routine at 0 CAB with the conversion table at OCE8 to 0D18, the HEX equivalent of Morse characters, and 0D1A to 0D4B, the
ASCII equivalent. The instruction E6 ASCII equivalent. The instruction E6 02 at OC9C is used to mask bit 1 of the input.
This may be modified if another bit is used, e.g. if bit three is to be used the instruction becomes E6 08 . Note,
however, that the byte at 0CA8 must be however, that the byte at OCA8 must be changed to a value three times the weight-
ing of the bit used, e.g. HEX 18 for bit 3 . ing of the bit used, e.g. HEX 18 for bit 3 . The initial preset speed of the program can
be changed by altering the byte at 0 C 05 to a value equal to the unit of time of the desired speed in milliseconds divided by five, e.g. for 12 w.p.m. the unit of time is HEX 14 . 0 . 05 should be changed to A sim
the author using parts from the "junkoox" but for better results he recommends that a more effective circuit be built using ideally a p.1.1. tone switch such as the
NE567 arranged to give a t.t.l output with logic " 0 " given when a tone is received and a logic " 1 " when the tone is removed. A hand-key with a $1 \mathrm{k} \Omega$ resistor tied to the
+5 V supply can be used for testing +5 V supply can be used for testing.

European Electronic Component Distributor Directiory 1980081, is oome of the Mackintosh
compilations, which details distribut complations, which details distributors, in their
several guises, in France, Italy, UK, West Germany. Names and addresses of the distributors products hands are followed by a keyed list of tory contains 304 pages company. The Disec-
$\xi 3075$ dollars from E30/75 dollars from Mackintosh Publiciations
Ltd, PO Box 28, Luton, England LU1 SDB.

WIRELESS WORLD FEBRUARY 198

N OUR NEXT ISSUE A range of counters

Constructing a range of counters based on the versatile Intersil ICM7216 i.c.. From a set of modules a variety of instru ments can be assembled Examples described are a $0-100 \mathrm{MHz}$ universal counter, two frequency measuring instruments up to 200 MHz and ouncy, and a low fre quency counter for 10 Hz

Magnetic recording

 progressrecording years the tape recording progress has on by the popularity of high-quality sound reproduction and by the need to store data on tape or magnetic disc. James Moir reviews advances in equipment and tape coatings.
Guide to
s.a.w. devices

Intended specifically for the professional applicato engineer, this artile describes the electriapplications of and applications of three ypes of surface acoustic pass filters delay bandpand oscillators. Emphas and oscillators. Emphasis is on their use in mod
On sale
18 February
"OPEN CHANNEL" FREQUENCIES
 (October 1980 issue, p.68) has aroused great
interest from all those concerned with radio communications, not least Prniliss Research
Laboratories, Redhill. We have carried out field Laboratories, Redhill. We have carried out field
trials to ascertain the performance of a radio trias so at 900 MHz , and made comparisons of
service
and 900MHz with other frequencies.
Three-watt transmitters for $27,85,172,456$ Three-watt transmitters for 27, $25,172,456$
and 958 MHz were installed in a van. The and 958 MHz were installed in a van. The
27 MHz equipment was a.m., the others were f.m. with a peak deviation of $\pm 5 \mathrm{kHz}$. The an-
tennas were simple monopoles, mounted on the tennas were simple monopoles,, ,
vehicle roof 7 feet above ground.
An estate car was fitted with receivers for
each band, from which signal level and spech each band, from which signal level and speech
were recorded. Transmissions to the estate car were recorded. Transmissions tation estate car
were also made from a base station, where the were also made from a base station, where the
antennas were approximately 33 feet above ground level.
At 958 MHz,
At 958 MHz , the useful range in an urban
environment was about 1.5 miles when operating base to mobile, and $3 / 4-1$ mile mobile to moing base tistening tests showed that the coverage
bas patchy, but it was found that reception was was patchy, but it was found that reception was
relatively unaffected by tunnels and bridges. A test in open country, with a near line-of-sight test in, revealed that the mobile range was about
$3.31 / 2$ miles. Under more usual mobile conditions $3-31 / 2$ miles. Under more usual mobile conditions
it was found that the range was about $11 / 2$ miles it was found that the range was about $1 / 2$ mile
due to the presence of trees and hedges. due to the presence of rress and hedges.
A summary of the results is shown in the
following table.

Fading was noticeable at 456 MHz , very
noticeable a 172 MHz , but virtually absent from noticeable at 172 MHz , but virtually absent from
the 85 and 27 MHz transmissions. The surprisingly low results for 27 MHz were due to heavy interference from overseras stations.
By use of the inverse fourth power law, the range predictions cited in the "Dpen Channe"' document can be scaled from 25 W down to 3 W ,
and are shown below. and are shown below.

These results show that the usable range falls as the frequency is ramer. .he range at 900 MH could be increased by raising the transmitter
power, and by use of a gain antenna. A 30W,
 achieve an urban range of $2-3$ miles. The power
output of hand-portable equipment is limited to a few watts by saferty and battery size, so a range of only a few hundred yards would be achieved
at 900 MHz The resuls radio service at 900 MHz would not prove to be equal or better than that at 77 MHz . It therefore
seems unlikely that present illegal users of
27 MHz would invest in equipment that would
give them a performance inferior to that to give them a performance
which they are accustomed. C. S. Barnes and D.W. H. Calder Philips Research Laboratories
Redhill
Surey
IS LIGHT VELOCITY

A CONSTANT?

This letter is an open invitation to interested physicists to begin working towards an experiment that could test directly the constancy of the velocity of light and hence the validitity of the deavour to measure time intervals four ordders of
magnitude greater than magnitude greater than those in the Michelson-
Morley experiment and thus would be entirely Morley experiment and thus would be entirely
free of time dilation and length contraction effects.
effects. Two clocks will be required, able to neasure
time down to 100 picosecond and most importime down to 100 picosecond and, most impor-
tant, able to be synchronised within the same uncertainty. By "synchronised" I mean compared by some appropriate technique while both positioned at one point in space
Now keeping one of the clocks at the point A, B, a distance d in the direction of Earth's orbital velocity v. (The speed of transport can, of
course, be adjusted so that time dilation imparted to the clock will be as small as we please.)
Let a ray of light depart from A at the $t_{\text {t }}$ time, Let a ray of light depart from A at the t_{A} time,
let tit at the t_{B} time be reflected at B and A arrive at A again at the $t_{A^{\prime}}$ time. Then $t_{B}-t_{A}=d /(c-v)$ and $t_{A^{\prime}}-t_{B}=d /(c+v)$.
Thus Δt, the time dif
Thus Δt, the time difference between the two iournevs, is equal to $d /(c-v)$ minus $d(c+v)$ or
$2 d v /\left(c^{c}-v^{2}\right)$. If we take $d=3 \mathrm{~km}$ and assuming $v=30 \mathrm{~km} / \mathrm{s}$, then Δt will very nearly equal to 2
nanosecons. nanoseconds.
In the Mic
$d v^{2} / c^{3}$; using the same numerical values for d and v a above, $\Delta t \approx 3 \times 10^{-13}$ second. As time
dilatation and lenth contraction are quantities dilatation and length contraction are quantities
of the same order, they will have no bearing on our results.
Increasing the distance between the two
clocks to 30 km or 300 km would result in the clocks to 30 km or 300 km would result in the
correspondingly greater value for $\Delta t(20$ and 200 correspondingly greater value for $\Delta t(20$ and
nanoseconds, respectively), thus broadening the required time uncertainties tenfold or hundred-
fold respectively fold respectively.
Our reasoning has, so far, been quite consisOur reasoning has, so far, been quite consis
tent with the theory of relativity. The two clocks should according to the theory be declared to
beout of step by that (Δt) amount of time. be out of step by that (Δt) amount of time.
Why? Because of the manner in which the Why? Because of the manner in which the
theory defines syncranism. To quote Einstein
"On Electrodynamics of Moving Bodies", theory deines synchronism. To quote Einstein
("On Electrodynamics of Moving Bodies",
Dover):
 definition that the time requirsed by tight to tra-
vel from A to B equals the time it requires to travel from B to $A^{\prime \prime}$
that is , the wo clocks are in step if $t_{B}-t_{A}$ that is, the two clocks are in step if $t_{B}-t_{A}=$
$t_{A^{\prime}} t_{B}$ and are out of step if $t_{B}-t_{A} \neq t_{a^{\prime}}-t_{B}$. $t_{A^{\prime}}-t_{B}$ and are out of step if $t_{B}-t_{A} \neq t_{t^{\prime}}-t_{B}$.
The faut with this definition of synchronism is that it transposes the a priori and a posteriori
modes of reasoning, thus freezing the postulate
fithe veloaity of ight intoo aiat accomppliaw or

each other.) if is found in our experiment that
Thus if in $t_{B}-t_{A} \neq t_{A^{\prime}}-t_{B}$ we will be free to conclude that
the velocity of light is not a constant; and should the velocity of light is not a constant, and sere equal,
we find that the two time intervals wer well then.
In either case we will need a theory to replace
the one that has outlived its usefulness. The one that has outived
Michael M. Albarari
Whangarei, New Zealand

FLOATING BRIDGE AMPLIFIERS
I read with some interest the recent articles by-
R. M. Brady on the "Floating Bridge Amplifier" (September, October 1980). It is indeed a superior method of producing reliable,
distortion, very high power amplifiers. We have been producing such a design since
1972 in the form of the Amcron M600 (600 1972 in the form of the Amcron M600 (600 watts, $0-45 \mathrm{kHz}$ in 8Ω) and the corresponding
bridge-bridge version, M 2000 (2000 watts, 0 40 kHz into 8Ω). They were advertised on p. 6 of the September issue and p. 89 of the October ssue by Kirkham Electronics.
Gerald R. Stanley
Crown International
Elkhart
Indiana, USA

COMMERCIAL
 BROADCASTING

Lord Reith said in 1952 Somebody introduced duced Christianity and printing and the uses of electricity. And somebody introduced smallpox, bubonic plague and the Black Death. Somebody casting into this country",
casting into this country"
But another former BBC director-general, Sir
. Frederick Ogivie wrote: "Freedom is choice.
And monopoly of broadcasting is inevitably the And monopoly of broadcasting is inevitably the it is run, or how wise and kindly the boards or committes in charge of it. It denies fredom of mont to speakers, musicians, writers, actors and all who seek a chance on the air". In 1977 Lord Annan's Committee on the Future of Broadcasting, although not withour
its criticisms of ITV-ILR, reported that any broadcasting service must be judged on the quality of its programmes and that it is one of
the achievements of British broadcosing in a he achievements of British broadcasting (in a passage "crogrammes are regarded as hand-made
that
products produced by individual craftsmen and products produced by individual c,
not as articles of mass production",
andicles of mass production".
$=$

Clearly your editorial "Save our public se
vice broadcasting") (December 1980) sided mo
with the with the late Lord Reith than either Sir Frede
rick Ogivie or Lord Annan. But the picture it rick Ogilvie or Lord Annan. But the picture
painted of commercial companies producin programmes designed to "insulate people from
reality, to keep them quiet, uncritical and eality, to keep them quiet, uncritical and
ccepting", seems, to say the least, out of all accepting" seems, to say the least, out of
ouch with reality. What price "World in A
(ion" "TV ETy" "The London Programme" ouch with reaility, "That price "World in Ac$\dot{\cdot}$ etc, etc? The Annan Report commented cial sector has by common consent surpasse, the BBC. That is in the presentation
Insulating its viewers from reality?
You assume, furthermore, that producers are dominated by the advertisers (do the better ediors of our press take their cues from advertising "has the central resposibility for administering he ITV and ILR systems and is ultimately esponsible for the content and quality of everyious endeavours of the Corporation to hold 50 per cent of the audience rating to justify the payment of licences by all viewers, it ignores the hose who for part of their careers produce pro grammes for the whiter-than-white Corp or the blacker-than-black ITV. In short, sir, your edi where smallpox, bubonic plague and the Black Death are the Reithian synonyms that never asting never willer exist in icence-fundicd service broad nent-funded British organizations.
7. Ring
Member IBA

Imperial College of Science and Technology
London, SW7
Professor Ring is the IBA member with special interest
in engineering.- Ed.
Your comments in the December 1980 issue on especially in view of the fact that there was no demand or great enthusiasm, at the time, for its introduction. This is just one more area wher make a re-adjustment which is long overdue. Robin H. Mann
Barnet
Hers
What has Wireless World come to? First you rge us to abandon our nuclear defences, and pose of independent broadcasting is to "insulate people from reality, to keep them quiet, uncriti"" which songds like like ys a synthetic cultur that viewers are stupid and don't know what they want.
In case there are other people with a simila
view, here is a lesson in simple economics. Ad vertising is an information service, nobody forced to buy anything. Advertising can in rease turnover and competition, keeping prices
down in the shops. ITV-ILR is paid for by advertising revenue which comes partly fron avings made through mass production, enabled by increased turnover, which in turn means Independent broadcasting is therefore inde endent of government and dependent on the viewers. I would suggest any lack of choice in
TV-ILR programming is the result of having only one channel.
If people want to save public service broad-
casting, as you put it, they should persuade the casting, as you put it, they should persuade the
government to introduce a fairer funding
system, where viewers who watch ITV-ILR
on't also have to subsidise BBC programme by some formula to the size of audience and ange of programmes.
Perhaps, then, when public service broa Perhaps, then, when public service broad
casting (or state broadcasting) operates under commercial pressures, rewards and competitio and administration relate to what the viewer and
and istener actually want rather than what the staff
think thay should want. hink thay should w
Ian S. Thorburn
Edinburgh
While I agree with your editorial in December"s issue "Save our public service broadcasting"
would like to make the following point Competition between the BBC and ITV-ILR which leads to one out-bidding the other is the
main cause of the BBC's financial problems Entertainers and promoters are getting richer s are the staff working for the broadcastin It would be interesting to know the cost to the public when the IBA costs are added to the
licence fee. icence fee
Will an Will an increase in the licence fee solve any-
ing? I think not: we will still get the BBC thing? I think not: we will still get the BBC
rying to out-bid the commercial broadcasters. Putting up the licence too much, with the large.
number of people unemployed, might result in a drop in revenue. What is the solution? Irop W....ordan
Stroud
Glos
As a long term subscriber to Wireless World
have viewed with disquiet the recent trend to have viewed with disquiet the recent trend to hrases in your most recent leader on the sabject of commercial broadcasting bring mind such descriptions as 'hysterical outburs'
nd 'political diatribe', yet even these do sca ustice to the ill thought-out collection of clichés, non-sequiturs and downright untruth which appear on page 35 of the December issue,
It must be clear even to your iaundiced ey It must be clear even to your jaundiced ey (ci. your own leader "the growing profes
sionalism of commercial broadcasting") that either quality nor lowest common denominato rogramming is the sole prerogative of any on ers and the media on which they advertise is all pervading, as I am sure you would find wer
you to fail to deliver to your advertisers the readership they expect. Far from rejicicing in the financial difficulties of the BBC, most
thinking commercial prodccisters hinking commercial broadcasters accept that a service is essential to the maintenance of standards while, equally, an enlightened public service organisation will be able to make ise of th
many innovations and ideas which the economic pressures of commercial broadcasting of neces y produce.
As someone who makes his living from the
despised (by your leader writer) commercial despised (by your leader writer) commercii
broadcasting, I I ound the last paragraph grossly offensive. My own organisation, with a full-tim
staff of 30 , provides 1 heurs staff of 30 , provides 18 hours a day, 7 days
week of entertaining, informative, and popula local commercial broadcasting. Lest the old say ing about 'juke box radio' come to mind 1 would point out that a typical day includes $8-81 / 2$ hour
of music, $2-2^{1 / 2}$ hours of news, 3 hours of talks, reatures and current affairs, 2 hours of commer cials, 2 hours' of 'short' features (interviews hour of promotional material.
It really is 'make believe' to suggest that com-
mercial broadcasting is only designed to "insu tercial people from reality" to pesigned to "ins ate people from reality" to purvey a "syntheti
culture" or is a "substitute for the real thing"

Such biased and emotive phrases have no place less World.
T. F. Mason Plymoush Sound Limited
Plymouth

Congratulations on your editorial "Save our public service broadcasting", in
180 issue. I couldn't agree more 1980 issue. Ich
D. A. Barlow
Bingley
Bingley
W. Yorkshire

FAILURE OF DISTRESS SIGNALS AT SEA The letter from Mr Boyd (December 1980 issue) dence on the inadequacies of some ships' aerial at 500 kHz and the consequent risks to whic both ships and crews are exposed. The circum-
stances described by Mr Boyd almost exactl stances described by Mr Boyd amost exacli
parallel those experienced by Mr Harding, from whose letter I quoted in my article in Nautical eview, September 1979. I would like to con ment on two points raised by Mr Boyd:

1. Whether insulator leakage, poor siting or low aerial capacitance is the dominant cause of poo performance will depend on the particula
layout, and will vary from ship to ship. It is n therefore possible to dismiss the deck insulator as a factor, nor the analysis of the effects o leakage given in the "Admiratty Handbook of
Wireless Telegraphy", which is as valid today a Wireless Telegraphy", which is as valid today a
when it was written. Mr Boyd himself obtained mproved performances on washing down th insulators.
2. The emergency generator may start automa, inst be stame ships, but on others the diesel sting or fire that may if the ship listing or on fire, that may not be easy. The
B.O.T. recognised the 500 kHz battery equipment as being the ultimate means of salvation, and indeed required that an instruction card be
displyed to an emergency.
It would not be necessary for Mr Boyd' marine superintendent to lay out $\$ 10,000$ for mast aerial. Observation in many ports shows UShat the Continental powers (France, Belgium, oo obtain maximum capacitance in th minimum space, with minimum number of
supporting insulators. My article in Safety at Sea, May 1978 , touches on that point. My thanks to Mr Sawyer (December letters) for his commen
John Wiseman

MICROCHIPS AND

 MEGADEATHSI was somewhat surprised by the nature of your
leading article "Microchips and megadeath"" leading article "Microchips and megadeaths" in
the November 1980 issue. The world has always existed of course with a "balance of power" " one form or another and I feel that I must pu
the following 1. You reprint an account of the Hiroshima atomic bomb but do not balance it with an account of the horrors suffered in Japanese pri
soner-of soner-of-war ca
soldiers. Why?
2. Can you ever see engineers in the communis countries being asked to voice their views on how their government should use their exper-
tise? I think the answer is an emphatic "No."

What proportion of the $W . W$. readership, one nicalities, well-remunerated jobs that are open and perhaps a few words on how wonderful Yes, we pay 60 p a month to be informed, to and to have our view of life broadened; at least that's what I would have thought. If fair comwhat may we have to pay one day to obtain information we desperately desire but which is I , for one, welcome the broadening of $W . W$'s field of interest, even if I may sometimes be
unamused or confused, or find it weighty with every word if I d don't want to I I can heven to read without an "off" switch. Farmborough
Hants

LOGIC DIAGRAMS

While I applaud the aims of Tony Cassera's
article "Intentional logic diagrams" in the November issue, I disagree with his use of a
suffix L as the mnemonic for the 'active low signal in place of the bar over its name. frame computer sargon and I presume mainlogic the prefix N is used to indicate an 'active
low' signal (e.g. the N in NAND which is used to show that the output is 'active low'). The origin of this is I suppose the term Negative
Logic used to describe circuitry where the more negative voltage is regarded as the true, i.e. So I sugg either prefix or suffix to indicate the 'active low' We could even coin some new names to go here in Fig. 1. Incidentally the EXOR symbol
for the 'active low' input version as shown in the article is inconsistent - the symbol does not
and
need the extra bar at the input but should be as need the extra bar at the input but should be as
in Fig. 2. In fact this really should be the unable to support the proposed levy on blank
tapes and those who have studied the case for a levy will indeed be amazed. So much money is pounds per cassette would be called for. As technically informed people we should
readily see that if it were imposed there would be a great sale for a new generation of tape speeds and even with four mono tracks. The fact is that most "pop" music, in which the
money lies, is listened to on cheap transistor radios or record players and hi-fi is unwanted. levy on tape is doomed to failure.
But is your correspondent Mr Simmons (Dewithout qualification the proposition athat cians and their agents are entitled to a just
reward for their labours? The money which is alleged to be lost by the use of tape recorders is
that which once had to be spent if one received a permanent record of a performance. Is it necessarily just that any price could be placed gramophone record or tape? The yery existence of the Monopolies Commission indicates that a answer must be no. Therefore one needs to copyright, because that is the mechanism used
for keeping the prices of records and preeosts, royalties apart, level far higher than the In simple terms the musical world divides their works are out of copyright, and the world "iackpot." The performers of both ought in theory to be content with a flat rate fee for their
performances on the basis that it is just a iob of work, but if that notion suits clsssical musicians are going for the "jackpot" ap well. In practice tween performers and composers in the "pop" levy is a Luddite-type action.
Two media, namely radio and records, were
exploited vigorously and with the obiective of making money. Radio, whatever the BBC may
say, was the advertising medium and the objective was to make the money. Tape has now come and it it easy to record from radio, with
the obvious result. Perraps we should reflect the tool of the record producers we would never have been exploited as the source of vast sums of Now we have the means of not being exploited by using a tape record
which is being attacked.
Looking back to the old days, e.g. those of
the $78 \mathrm{r} . \mathrm{p}$.m. record, it is noteworthy that paid a modest fee to the BBC which provided music on a considerable scale almost entirely by composers. What went wrong? It seems to me "pop" world or by crook a lot of people in the of us than the BBC ever did
It will fail if for no other reason than that will be used ad nauseam and the new generation life.
L. . treatfield
Poole
Pole
Dorset

T.t.l. logic probe

Performs static and dynamic tests on logic circuits, including 'glitch' detection

by A. J. Jameson, B.Sc.

The probe described is unusual in that
it will detect and indicate the
presence of 'glitches', the transients
caused by propagation delays in logic
circuits. In addition to the usual static
testing, it also shows positive or
negative coincidence in two pulse
trains of different frequencies.
A logic probe is a useful aid to testing and
fault-finding digital systems. The many
commercial and amateur designs currently,
available provide information about the
static and dynamic behaviour of circuits,
but have the limitations of not providing at A and B, but the output C would remain high, leading to the conclusion that either the gate is faulty or the pulses are not would probably require the use exercise beam oscilloscope to prove whether or not A and B are coincident. Even so, if the pulses are of different frequencies, the task of 'coincidence proving' may be impossible using an oscilloscope. In addition, the use the highly portable, pocket-sized logic the highly portable,
probe somewhat futile.
Another example encountered all too often, despite careful design, is that of 'glitches' produced by static and dynamic race-hazards. In the example of Fig. 2, a
negative-going 'glitch' is produced due to negative-gong on delay t_{d} through the JK flip-flop. This example is also shown in Fig. 3, where a 20 ns pulse has been produced using the circuit above.
The use of a logic probe on such a circuit an oscilloscope with delayed-sweep facilities would probably show nothing unless the frequency of A was greater than 1 MHz . However, the presence of such a
circuit within a system, gives rise to erratic operation and is quite often diagnosed as an 'elusive dry-joint'
The logic analyser probe now described, solves these problems whilst still providing the features of the standard probe. It
should be mentioned that the t.t.l. i.cs used in the probe are operating with pulse durations shorter than is recommended by manufacturers. Although two probes have been made without trouble in this respect, it may be necessary to experiment with
several i.cs. The total cost of the unit is about £10.

Circuit operation
Protection circuitry. The protection circuitry shown in Fig. 4 has been incorporated to prevent damage to the probe due D_{5} is illuminated when the supply voltage is correct, i.e., when the applied voltage is $4.5-5.8 \mathrm{~V}$. This feature is very useful, as all too often the most obvious fault of incorrect supply voltage is overlooked and 'suspect' digital circuitry.
Under normal operation, $\mathrm{T}_{\mathrm{r} 1}$ is off, $\mathrm{T}_{\mathrm{r} 2}$ is on and hence 5 V is applied to the probe

circuitry via RLA. However, above 5.8V
D_{2} conducts and $\mathrm{T}_{\mathrm{r} 1}$ is biased on. This switches T_{r} off and opens RLA, thus isolating the logic probe circuitry. Also, voltages above 4.5 V cause D_{4} to
conduct, switching T_{13} and conduct, switching $T_{r 3}$ and $T_{r 4}$ on and Probe circuit. IC_{1} and IC_{2} in Fig. 5 form 'window discriminators' with threshold voltages of 2 V and 0.8 V . These i.cs are 9637 dual differential line receivers and device, R_{10} and R_{12} are needed to 'pulldown' the input to 1.5 V when the probe is floating

Fig. 1. An ordinary probe would not stow due to the pulse trains not being in
coincidence, or the gate being faulty.

Fig. 3. Evidence of the glitch in Fig. 2,
based on a screen photograph.

Fig. 2. Propagation delay between the input and output of the flip-flop produces a narrow pulse or glitch at C.

Fig. 4. Protection circuit avoids damage to the probe in the presence of incorrect
supplies, and shows that the supply supplies, and shows that the s
voltage is in the usable range.

IC_{3} provides the ANDing circuitry eeded to facilise the coincidence detec The latches comprising $\mathrm{IC}_{4 \mathrm{c}, \mathrm{d}}$ and $\mathrm{IC}_{6 \mathrm{c}, \mathrm{d}}$ indicate the logic level at the probe. If a 1 is present at the input to IC_{1}, point A will
also be high. This in turn is inverted by also be high. This in turn is inverted by
IC $_{5}$ and a low is therefore present on $\mathrm{IC}_{4 \mathrm{c}}$. Thus $T_{r 6}$ is conducting and the red l.e.d. D_{9} is lit. These latches are reset by narrow pulses produced by the unijunction oscillator T_{r}.
If a permanent 1 or 0 is present at the probe, it overrides this reset pulses and ore either D_{9} or D_{11} remain lit. Positive going glitches are detected by IC $_{72}$ and nemative-going ones by $\mathrm{IC}_{7 \mathrm{a}}$, and negative-going ones by $\mathrm{IC}_{6 \mathrm{a}, \mathrm{b}}$, $\mathrm{IC}_{\text {slefef, }}$, and $\mathrm{IC}_{7 \mathrm{~b}}$.
These circuits
with switchable pulse duration, and a latch. By considering the positive glitch detector, the operation of the circuit is as
follows. ollows.
$\mathrm{C}_{4 \mathrm{a}}, \mathrm{D}_{6}, \mathrm{C}_{4}$ and $\mathrm{IC}_{4 \mathrm{~b}}$ form the monosta${ }^{\text {ble and }} \mathrm{IC}_{\text {sab,b, }}$ equalize the propagation present at A produces a negative-going

WIRELESS WORLD FEBRUARY 198

Fig 7. Suggested form of case.
pulse at the output of $\mathrm{IC}_{4 \mathrm{a}}$, whose duration is equal to the propagation delay through $\mathrm{C}_{5_{2}}$ approximately 15 ns$)$. This pulse duis discharged rapidly via D_{6} and the output of $\mathrm{IC}_{4 \mathrm{~b}}$ becomes high. D_{6} is now reverse biased and C_{4} is charged by the input circuitry of $\mathrm{IC}_{4 \mathrm{~b}}$, until the high input-thres${ }^{\text {hold }}$ level of ${ }_{4}$. ${ }_{4}$ is reached, when the
The duration of the monostable period has two additional lengths, determined by C_{6} and C_{8}, which enable the glitch period to be determined approximately
The propagation delay of $\mathrm{IC}_{4 \mathrm{a}, \mathrm{b}}$ is com-
pensated by a similar delay through pensated by a similar delay through
${ }^{\text {I }}{ }_{5 a, b, c}$. Thus, the trailing edge of the pulse at the CK input to $\mathrm{IC}_{7 \mathrm{a}}$ is time coincident with the positive edge of the pulse at the D input. These pulses are
illustrated in Fig. 6 , which shows that if illustrated in rig. 6, which shows that if
the pulse produced by the monostable ($\mathrm{IC}_{4 \mathrm{~b}}$ output) is of shorter duration than the input pulse at A , then the Q output of $\mathrm{IC}_{7_{2}}$ remains unchanged and therefore is not detected as a glitch. However, if the pulse from $\mathrm{IC}_{4 \mathrm{~b}}$ is longer than that at A ,
then the D -type flip-flop $\left(\mathrm{IC}_{7}\right)$ toggles and the Q output goes high, registering a glitch. This latch is periodically reset by the unijunction oscillato

Construction

As will be appreciated, pulses of less than 100 ns duration are easily attenuated by stray capacitance and inductance. Therefore, all leads must be as short as possible.
By careful choice of components, it will be found that the two boards may. be
'sandwiched' with component sides together and therefore can be fitted into a case of $100 \times 50 \times 25 \mathrm{~mm}$, as illustrated in Fig. 7.

Testing

If a high-frequency oscilloscope (of around 50 MHz bandwidth) is available, the test circuit consists of a simple oscillator running at about 1 MHz , driving a 74121 monostable with a variable pulse duration
from $20-200$ ns. Using such an arrangefrom $20-200 \mathrm{~ns}$. Using such an arrange-
ment, it is a comparatively simple matter of checking the pulse lengths at which the glitch circuitry operates.
However, without a suitable oscillo

Specification

Power c
sumption
100 mA (I.e.ds off) 180 mA (all l.e.ds on)
P.s.s. indication $4.5 \mathrm{~V}-5.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$
P.s.u. indication4.
Input im-
pedance
'low'thr
'Low' threshold $0.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$
'High' threshold2.0V $\pm 0.1 \mathrm{~V}$
Max. input freq. 25 MHz
Max. input fleq. 25 n
Glitch det. ${ }_{\text {(1) }}^{\text {ranges }}$ 30ns
$\begin{array}{ll}\text { ranges } & \begin{array}{l}\text { (1) } 30 \mathrm{~ns} \\ \\ \text { (2) } 70 \text { ns approx. } \\ \text { (3) } 120 \mathrm{~ns}\end{array}\end{array}$
(3) 120 ns
nostable periods is to generate glitches of approximately known length, relying on the propagation delays of cascaded gates. It should be stressed that the timing
periods need only be approximate and con sequently, no great difficulty will be encountered.
The probes consist of a 1 mm plug with a sewing needle soldered in place and also of wire. The earth point should be connected by a short lead to the area under inves
tigation to minimize pulse attenuation. \square

Literature received

Celestion have sent us a leaflet on the interferometric testing of loudspeaker cones, using th Doppler effect in a laser system. The leaflet als provides a complete history. It was accompa-
nied by a spectacularly illustrated brochure and an incomprehensible poster. WW40
Greenweld's catalogue of electronic compo nents, hardware, tools, etc, complete with prices, is now available from Greenweld
Electronics Ltd, 443 Millbrook Road, SouthElectronics
ampton SOI 0 HX , price 50 p .

A
A series of leaflets from Ferranti describe the
F100-L, which is said to be the only 16 bit microprocessor to be designed, developed and made in Europe for commercial and military applications. The leaflets can be obtained from Ferranti Computer Systems Ltd, Compute
Sales Dept., The Courtyard, 20 Denmark St. Sales Dept., The Courtyard, 20 Denmark St.,
Wokingham, Berks. RG11 2BB. WW402
A full catalogue of the enormous range of TAB books, which includes publications on radio,
antiques, aviation, d.i.y., car mechanics and antiques, aviation, d.i.y., car mechanics and
many more subjects, is available from TAB Books, Inc., Blue Ridge Summit, PA 17214
U.S.A.
WW403
Babani's range of low-cost publications on radio catalogue, which can be had from Bernard Babani (Publishing) Ltd, The Grampians,
Shepherds Bush Road, London W6 7 NF .

F.m. detectors - 2

A survey and a system of classification
by S. W. Amos, B.Sc. M.I.E.E.

Phase-comparator detectors This type of detector also makes use of the
varying phase relationship between two input signals, nominally in quadrature, such as the voltages across the primary and uned secondary windings of a transformer but it does so in a manner quite different from that of the detectors described earlier.
In Seeley-Foster and ratio detectors the two input signals are added to produce resultant voltages (the amplitude of which varies with the phase difference) which are applied to amplitude detectors, the com-
bined output giving the required modula tion-frequency signal.
In phase-comparator detectors the two input signals are limited so as to form rectangular pulses. Limiting may be carried out in separate stages preceding the
phase comparator or in the phase comparator itself. The degree of overlap of these pulses varies with the phase difference between the two inputs and determines the output current of the comparator which is therefore a copy of the modulation wavedepends on the relative timing of the two sets of pulses and is independent of the amplitude of the input signals provided this is sufficient to give satisfactury limiting.
To summarise: in the detectors described in the first article the amplitude of the primary and secondary voltages is the significant quantity whereas in the phase comparator it is the timing of these oltages which matters. detector is illustrated in the block diagram of Fig. 13(a).
Self-limiting phase-comparator detectors. In an early form of phase-comparator to the two input grids of a special valve The grids are required to give limiting action: in other words positive-going sig-
nals are required to increase anode current als sare required to increase anode current up to a particular value after which further change in anode current. This is the type of control achieved by the suppressor grid of a pentode. Signals applied to such a grid deflect cathode current from anode to screen grid or vice versa but cannot in-
crease or decrease cathode current which is determined by the screen-grid and controlgrid potentials. Thus the ideal valve for this particular application is one with two uppressor grids.
In addition it is
In addition it is important to minimise

(b)

Fig. 13. (a) General form of phase-comparator detector. (b) Self-limiting coincidence
detector using a nonode valve.
damping of the input-signal source (normally the primary and tuned secondary grids when they are driven positive with respect to cathode and, to this end, inputgrid current must be kept to a low value. This is achieved by so constructing the ween two positively-charged screen grids where there is no space charge to support grid current. Finally therefore the valve required consists of three screen grids, two nput grids, a control grid and a suppresso kidk. Thus
(b) was the nonode derived and Fig (b) shows the circuit diagram of an f.m. illustrated in the waveform diagrams is Fig. 14 which show that anode current can flow only when g_{3} and g_{5} are both positive i.e. when the pulses derived from primary and tuned secondary windings overlap. As the degree of overlap varies with frequency

Fig. 14. Action of the nonode valve.
Diagram shows V. Diagram shows $V_{g 3}$ and $V_{g 5}$ in
quadrature, the conditions when the input signal is at the centre frequency Anode current can flow only when $V_{g 3}$
and $V_{g 5}$ are simultaneously at zero. used in a similar way to the nonode. It was were applied to the control grid and the suppressor grid but the geometry of the
electrode structure was quite different electrode structure was quite different
from that of a conventional pentode in order to achieve the type of limiting action required at the two grids. It was known as a gated-beam valve.
Transistor phase-comparator detectors. In its simplest form a transistor equivalent
of the nonode or gated-beam tube could take the form shown in Fig. 15. One of th disadvantages of such a simple circuit is that the output would contain a large com-
ponent at the input frequency in addition po the wanted modulation-frequency component and in practical forms of phasecomparator detector precautions are taken to minimise this unwanted component. In integrated circuits, for example,
extensive use is made of the push-pull extensive use is made of the push-puli
principle and a simplified version of a typical circuit is given in Fig 16. The output of the i.f. amplifier (also included in the i.c. is applied in the form of push-pull pulses to the bases of Tr_{5} and Tr_{6} so that when
one of these transistors is driven into conduction the other is cut off. The quadrature signal is derived from the i.f. output by use of an external LC circuit and associated reactance (one possible arrangement is shown in dashed lines) and is ap-
plied also in pulse form to two push-pull pairs $\mathrm{Tr}_{1} \mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3} \mathrm{Tr}_{4}$ in a balanced circuit which ensures that none of the quadrature component appears between th output terminals. Suppose Tr_{1} base is driven positive by the quadrature signal at an
instant when Tr_{5} is conductive. The effect is to promote conduction in Tr_{1} and thus to cut Tr_{2} off, producing a net output between the output terminals. Half a cycle later, when Tr_{6} is conductive, Tr_{3} and Tr_{4} behave similarly and again there is a net
output. The duration of these outputs depends, of course, on the extent of the overlap between the i.f. and quadrature inputs and varies with the phase difference between the two inputs. The output can be purposes.
Tr_{7} is included to stabilise the mean current through the detector and is one of the many auxiliary components included in i.cs to ensure that the performance is
substantially unaffected by variations in ambient temperature or in supply voltage. A number of i.cs designed for use in f.m. receivers incorporate detectors with a circuit similar to that of Fig. 16 and they are often described as balanced, symmetri-
Counter discriminator This uses a principle quite different from those employed in the detectors so far des
cribed. If an f.m. signal is rectified the result is a succession of half-sinewave pulses the frequency of which varies according to to te modulation. At periods
where the pulses are crowded the mean

Fig. 17. Early form of pulse-counter discriminator
value per unit time is greater than at in stants when they are less crowded. This variation in mean value represents the
modulation waveform and if the rectified ignal is passed through a low-pass filter to uppress all but a.f. the output consists of the wanted modulation-frequency compo解 superposed on a direct compo ignal radiated from an f.m. broadcas transmitter is, however, very small com pared with the centre frequency, typically $\pm 75 \mathrm{kHz}$ maximum at a carrier frequency of, say, 90 MHz - a variation of less than mean value of the rectified signal and thus very small a.f. output from the low-pass iter. The relative change in frequency eater in the circuits, +75 kHz is
10.7 MHz being approximately $\pm 0.7 \%$. is usual, however, in receivers using pulse 455 kHz or even lower. At 455 kHz the maximum change in frequency is nearly 17% which gives a worthwhile modula component in the rectified signal.
Ter must be presented to the low-pas ecause these would give a spurious out put. Moreover all the input pulses must b of identical shape because variations in shape could also give unwanted compo
nents in the output. The problem is therefore, to generate from the i.f. signal a series of pulses all of identical form and mplitude, the number per unit time var ing according to the modulation.

Early pulse-counter discriminators wer
ed with square waves from the final limi ing stage in the i.f. amplifier. The square which, as shown in Fig. 17, incorporcited which, as shown in Fig. 17, incorporated The resulting train of positive-going blips was passed through a low-pass filter with a cut-off frequency of, say 30 kHz . A simple RC filter is shown in Fig. 17 which is taken from an article published by M.G. Scrggie
in $1956 .{ }^{*}$ In more recent pulse-counter discrimi-
nators the positive-going blips are used to rigger a multivibrator giving, for example, $1-\mu$ pulses which are passed overshoots) before being applied to the ow-pass filter.
Pulse-counter discriminators are used in applications where linearity is important .g. in f.m. rebroadcast receivers and in

Locked-oscillator

discriminators
As the title suggests this last type of f.m. discriminator is based on an oscillator which is synchronised by the f.m. signal so that of the input signal. Such a system can be expected to have two useful properties. Firstly the amplitude of the oscillator output can be many times that of the input gain. Secondly the oscillator output amplitude is independent of that of the input signal provided this is sufficient to give effective synchronising: in other words the system should give effective amplitude li-
miting. Thus the oscillator can be used as a source of amplified and amplitude-limited f.m. signals which can be followed by any of the types of discriminator described above. Used in this way, of course, the source of input signal for a discriminator Circuits of this type were described as early as 1944 .
The synchronised oscillator can, however, act as a discriminator. If it
operates in class C , taking one burst of operates in class C, taking one burst of
current from the supply per cycle of oscillation, the frequency of the bursts follows that of the input signal and so contains a modulation-frequency component which can be used as detector output. For the however, a low value of intermediate frequency (and hence oscillator frequency) is necessary to give a worthwhile performance from such a circuit.
Phase-locked-loop circuits. In this more recent application of the principle the frequency of the oscillator is controlled not by direct application of the f.m. signal but by a control voltage dependent on the difand that of the f.m. signal. The circuit, illustrated in principle in Fig. 18, is so designed that the effect of the oscillator control voltage is to minimise the phase * 'Low-distortion
World, April 1956.

Classification of f.m. detectors

Type	Example	Self-limiting?
(a) f.m.-to-a.m. converter plus a.m. detector	slope detector Round-Travis detector Seeley-Foster discriminator ratio detector	no yes
(b) phase-comparator	nonode gated-beam tube balanced detector symmetrical detector quadrature detector product detector	
(c) counter discriminator		no
(d) locked-oscillator discriminator	early types phase-locked-loop	$\begin{aligned} & \text { yes } \\ & \text { no } \end{aligned}$

Fig. 18. Phase-locked-loop f.m. detector.
difference between the two signals applied to the phase comparator. Thus the phase input signal and follows any variations in it. As in the circuits described earlier the output of the phase comparator con-
tains the required modulation-frequency ains the required modulation-frequency
component but the output is usually passed through a low-pass filter to suppress any radio-frequency components. This type of detector has something in "phase cond to described und
son of Fig. 13(a) and 18 shows that in phase-comparator circuits the quadrature nput is derived from the other input by use of a phase-shifting network whereas in the phase-locked-loop the second input is
derived from the output of the comparator so introducing negative feedback. The oscillator must be such that its frequency can be readily controlled by a voltage applied to it. It can be a Hartley or
Colpitts type in which part of the capaciColpitts type in which part of the capaci-
tance of the frequency-determining network is provided by a varactor, the d.c. input to which therefore controls the operating frequency. Alternatively, and this arrangement avoids any need for an
LC circuit, the oscillator can be an astable multivibrator, the control voltage being applied to the resistors of the RC circuits which determine the free-running frequency of the oscillator. The phase comparator may have a circuit similar to tha
shown in Fig. 16 .

To conclude this article the classificatio ff.m. detectors surveyed is summarised in the table above.

Proceedings have been published in book form
of the European Hybrid Microelectronics ference of 1979, which was held at Ghent in Belgium, to discuss various topical aspects oncerning applications and manufacturing and sloted into one of eleven sections, the last ten of which are devoted to technical matters elated to the production and uses of thin and
thick-film components and hybrid circuits hick-film components and hybrid circuits.
As one of the intentions of the papers is to advance hybrid microolectronic technology al-
ready in existence the level of backround ready in existence, the level of background knowledge required to enable full comprehen-
sion of the subjects is, of course, high. Illustra sions and an occasional photograph supplemen de written matter, which seems to consist of direct copies of originals as the type face varie
from one paper to another. The print is, from one paper to another. Tue print is,
however, in all cases clear, the quality of paper used is quite high and random samples indicat
that those works written by authors whose na
tive language was not English were not prone to of a scientific or highly technological natur even more difficult to understand. Not yet mentioned is the first section of the
book which is entitled Opening Session and book which is entitled Opening Session and consists of a paper called Economics and Marke
by E. Effenburger. Included in this paper is an attempt to evaluate the world market for hy
brids and resistor networks which, although constitutes only seven pages of a book of around 560 pages in total, is a rather good assesment o trends in this field. Mr Effenburger conclude
his paper by stating "In our opinion the time for his paper by stating "In our opinion the time for
film technics is now favourable and the significant growth is yet to come",
With a full title of Proce
With a full title of Proceedings - European
Hybrid Microelectronics Confer Hybrid Microelectronics Conference 1979,
his book is denominated ISBN 9062310680 nd published in paperback form by the Dutch Efficiency Bureau, P.O. Box 90 , Pijnacker, The

Battery-powered instruments

Choosing and using dry batteries, with some suggestions for improving service life

The use of batteries as the power source for small electronic instruments and equipment is often convenient and sometimes essential. The absence of a trailing mains lead (especially when there is no conve-
nient socket into which to plug it) and the freedom from earth loops and other hum problems offset various obvious disadvanother of battery power. When these and the appropriate conions indicate batteries as be made is between primary and secondary batteries, i.e., between throw-away and

Rechargeable versus
primary batteries
Rechargeable batteries offer considerable economies in running costs, though the initial cost is high. For example, direct comparisons can be made between certain layer-type batteries, e.g. PP3, PP9, and
also certain single cells, e.g. AA, C and D size primary cells, where mechanically interchangeable, rechargeable nickel/cadmium batteries and cells are available. These cost about ten to twenty times as much as the corresponding zinc/carbon
(Leclanché) dry battery or cell, and as much or more again for a suitable charger. This doubtless accounts for the continued popularity of the common or garden dry battery. Another point to bear in mind is that, contrary poce-hour capacity of many nickel/cadmium rechargeable batteries is no greater than (and in the case of multicell types often considerably less than) the corresponding zinc/carbon battery. Neverthelong periods out of reach of the mains, rechargeable batteries are often the only sensible power source-a typical example
would be a police walkie-talkie. In other would be a police walkie-talkie. In other cases the choice is ess clear: for instance,
an instrument drawing 30 to 35 mA at 9 V , and which is used on average for four hours per day five days a week, would obtain a life of 100 or more hours from a PP9 type dry battery (to an end point of 6.5 V , at $20^{\circ} \mathrm{C}$

Assuming the cost of a PP9-sized, rechargeable nickel/cadmium battery plus charger is 25 times the cost on a Puary years before the continuing cost of dry batteries would exceed the capital costs fo the rechargeable battery plus charger. charges on the capital, inflation and the
very small cost of mains electricity for recharging have been ignored.)

Using primary batteries

Often, then, the lower initial costs will dictate that a product uses primary batteries, and any measures which can reduce the running costs of equipment so powered must be of interest. When a decision to use primary batteries has been taken, there are
still choices to be made, one of which is the choice between layer-type batteries or single cells. Some designers prefer to use a number of individual cells in series to power a piece of equipment, rather than a layer-type battery. The main advantage
here is in a wider choice of "battery" voltage by using the appropriate number of cells, although if the usual mouldedplastic battery holders are used, one generally arrives
layer type.
The other
cells is that the user then has thindividual primary cells other than zinc/carbon, such as alkaline batteries. On low to medium drains with an intermittent duty cycle, e.g.
radio, torch, calculator, these will give up to twice the life of zinc/carbon batteries. However, they are approximately three times the price and therefore the running cost is greater. With very high current gimes the ratio of capacity realized (alkagimes the ratio of capacity realized (alk
line: zinc/carbon) would be increased. One of the main disadvantages of batteries is that they frequently prove to be flat just when one needs them. As often as
not, this is because the instrument has not, this is because the instrument has
inadvertently been left switched on. If the batteries are of the zinc/carbon type, they can then deteriorate and the resultant Fig. 1. Ten-min
author in 1969.
leakage of chemicals can make a very nasty mess. (If the batteries are rechargeable nickel/cadmium types this problem does
not arise: modern nickel/cadmium batteries are not damaged by complete exhaustion. However, note that if a nickel/cadmium "battery" is being assembled from individual cells they should all be in
the same condition - ideally new - and in the same state of charge. Otherwise, one cell may become exhausted before the res and thus be subject to damaging "reverse charging".
A really
A really effective indicator on a battery powered instrument might prevent this
lamentable waste of batteries. However, the many types of 'on' indicator used nearly all have proved of very limited effectiveness. One well-known manufacturer uses a rotary on/off switch, the part
transparent skirt of the knob exposing fluorescent orange sectors when in the 'on' position, and this is reasonably effective when the front panel is in bright light. Indicator lamps have also been used but
usually with intermittent operation to save usually with intermittent operation to save current. Examples are a blocking oscilato circuit driving an I.e.d. Unfortunately, the power that can be saved by flashing a lamp is very limited. The flashing rate cannot be much less than one per second or it may
fail to catch one's attention. On the other hand, the eye integrates over about 100 ms , so flashes much shorter than this must also be much brighter to give the same visibility. Thus a saving of about ten to one in power (ignoring any "housekeeping" cur-
rent drawn by the flasher circuit) is about the limit in practice.
The author must have ruined as many batteries as most people by inadvertently
leaving equipment leaving equipment switched on when not the only effective remedy was to replace

the on/off switch by an ‘on' push-button.
This switches the equipment on and iniThis switches the equipment on and initiates an interval at the end of which the
instrument turns itself off again. Clearly it instrumene curnsidenoy
would be most annoving if just at the the wrong moment - say when about to take a reading ment - say when about to take a
reatrument or whatever
switched isseff oft switched itself off, so the push-buton should also, whenever pushed, extend the
operation of the instrument to the full operation of the instrument to the full
period from that instant. One can thus play safe, if in doubt, by pressing the button again, 'fust in case'.
The period for which the instrument
should stay on is should stay on is, of course, dependent on
its use and the inclination of the designer. its use and the inclination of the designer.
However, a very short period -a minute or less - would generally be rather pointesss; provided one had one hand free
 ward "on whilst pressed" button, which is
also cheaper and simpler. For many purposes, ten or fifteen minutes is a suitable period, but clearly it is not critical unless the equipment is exceedingly current-hungry. After all, it is being left on overright
(or a wek-end) that ruins batreries (or a week-end) that ruins batteries
controlled by an ordinary switch, not the odd half hour or so.
In the late 1960 s , when the author first. used a ten-minute timer to save batteries, producing such a long delay economically
and with little cost in "housekeeping" current was an interesting exercise, especially as monstrously high resistances were ruled out as impractical or at best expensive. So the circuit of Fig. 1 was developed and proved very effective. The preset poten-
tiometer was set to pick off a voltage just slightly positive with respect to the gate of the n -channel depletion f.e.t., so that only a small aiming potential was applied across the $10 \mathrm{M} \Omega$ resistor to the timing capacitor, C_{1}. Thus pressing the 'on' button set the
complementary latch, turning on the instrument and initiating a bootstrapped ramp at the source of the f.e.t. This eventually turned off the latch and hence the instrument, unless the button were pressed again first, when the capacitor was
discharged again via R_{1} and the interval updated. This circuit was very effective in saving batteries, although the exact period was rather vague due to variation of the gate bias voltage of the f.e.t. with tempera-
ture. Incidentally, the purpose of the 0.0211 capacitor was to enable the preset potentiometer to be set for a 6 second period before the $2 \mu \mathrm{~F}$ capacitor was connected in circuit. This made setting up the An even simpler circuit is possible the advent of v.m.o.s. power f.e.t.s, and this is shown in Fig. 2. The circuit undoubtedly works well in practice, but in a piece of home-made gear, it has major in a piece of home-made gear, it has major
drawbacks. Firstly, the date sheet maxima for the f.e.t. gate leakage plus that of the tantalum capacitor would result in an 'on' time much less than that predicted by the time-constant of $47 \mu \mathrm{~F}$ and $10 \mathrm{M} \Omega$. Secondly, there is no clear turn-off point.
As the gate/source voltage falls below +2 V , the drain resistance rises progressively, gradually starving the load of cur-

Fig. 2.V.m.o.s. circuit, which is simple but which does not turn off cleanly.

Fig. 3. Delay circuit using an oscillator, followed by a counter. Very long delays can be
obtained by this method.

Fig. 4. Analogue delay circuit avoids possibility of interference from oscillator. A_{1} and
A_{2} are CA 3130 .
rent rather than switching it off cleanly This might be handy if you like your transistor radio to fade out gradually while you go to sleep, but it is not generally a useful feature.
With su

With such a wide choice of integrated circuits it is possible nowadays to obtain is simply to count down from an RC oscillator using readily obtainable values of resistance and capacitance. Various timer
i.cs are available working on this principle, although for a dry battery powered instrument, where current saving is always a prime consideration, obviously t.t.l. types are less desirable than c.m.o.s. The of a timer providing an on interval of up to half an hour with only a $0.1 \mu \mathrm{~F}$ timing capacitor, as in Fig. 3. Here, on operating the push button, the complementary latch is set, switching on the output, which
starts the CD4060 oscillator with the count at zero. The divide by 2^{14} output at pin 3 is therefore at logic 0 , holding the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor and hence also the $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor in
saturation. On reaching a count of 2^{13}, the output at pin 3 rises to the positive rail, turning off the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor and hence
the n - p - n transistor and the output. the $n-p-n$ transistor and the output.
Clearly, by increasing the timing resistor and capacitor at pins 10 and 9 respectively, and capacitor at pins 10 and 9 respectively,
delays of many hours could be obtained if required.
Such a timing circuit is reasonably cheap to incorporate in an instrument and requires no setting up. As shown in Fig. 3, it
is capable of supplying up to 10 mA or -more load current; larger load currents simply require the $100 \mathrm{k} \Omega$ resistor in the base circuit of the $\mathrm{BC109C}$ transistor to be reduced in value as appropriate. The cir-
cuit will switch off quite reliably even cuit will switch off quite reliably, even
though an electrolytic capacitor be fitted in parallel with the load to give a low source impedance at a.c. If a d.p.s.t. push button is used, the circuit can be further simplified by the omission of the two diodes. "hoe small, but nonetheless finite, cuit of Fig. 3 means of course that whilst 'on', the battery is actually being run down

WIRELESS WORLD FEBRUARY 198
slightly faster than if an on/off switch were used. However, in practice this is mor the equipment. Quite apart from inad vertent overnight running, an equipmen fitted with an automatic switch-off circuit is usually found to clock up considerably less running hours during the normal switch.
With modern i.cs, counting down from an oscillator running at a few Hertz is not the only way of obtaining a long delay with updated version of the bootstrapped timer of Fig. 1, which could be preferable for use in sensitive instruments where interference might be caused by the fast edges of the oscillator in Fig. 3. The analogue delayed long delay by applying a very much smal ler forcing voltage to the $10 \mathrm{M} \Omega$ timing resistance than the reference voltage at the non-inverting input of A2. With the values and devices shown, no setting up is required as this forcing voltage is still large
compared with the maximum offse voltage of the CA3130, A1. For longer delays, the $47 \mathrm{k} \Omega$ resistor R_{1} may be re duced, but it would then be necessary to zero the input offset voltage of A1 for
consistent results from unit to unit. This circuit also will switch off reliably with an electrolytic bypass capacitor connected across its output.
Figure 5 shows a useful and inexpensive battery-voltage monitor which may be con-
nected across the output of either of the circuits of Figures 3 and 4. The prese potentiometer can be set so that the front panel-mounting light-emitting diode illuminates when the supply voltage to the circuit falls below the design minimum the supply voltage at which the 1.e.d. illuminates is approximately $-20 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ which is generally acceptable, but this can be considerably reduced, if required, by connecting a germanium diode in series
with the lower end of the $22 \mathrm{k} \Omega$ preset potentiometer. The $47 \mu \mathrm{~F}$ capacitor delays the build-up of voltage at the base of Tr_{1} on switch-on, causing the l.e.d. to illuminate for a second or so, assuring the use that are in good condition. If the voltage falls to an unserviceable level whilst the instrument is on, the l.e.d. will illuminate again.

By connecting the monitor circuit across the output of the delayed switch-off cir-
cuit, the monitor draws housekeeping current only whilst the instrument is on.
Choosing the battery size Using one of the above circuits can reduce the average daily running time of an equip. nating overnight run-down), but the question still remains - "which dry battery to use?" Circuit design considerations usually dictate the minimum appropriate supply a wider choice of capacities is available using four single cells rather than a layer type battery, but for many purposes, an
end of life voltage of around 4 V is too more useful end of life voltage whilst if more useful end of life voltage, whilst if batteries in series can be used, 6 V or 9 V types as required.
To decide what size battery of a given voltage to use, refer to the battery manu-
facturer's data. Tables 1 to 3 give the total facturer's data. Tables 1 to 3 give the total
service life in hours to various end voltages (at $20^{\circ} \mathrm{C}$) for three different types of laye batteries. The top value PP9 and the ubiquitous PP3 represent the upper and lowe is one of the three intermediate sizes PP4, PP6 and PP7 in order of increasing capacity - which, whilst readily available, are not quite so commonly used. It is im portant to note that the tables give the
service life in hours for the stated curren at 9 V , i.e., for a constant resistance load. Thus the current provided at for example a 6 V end point is only two thirds of that in the left-hand column of the table.
The first fact which strikes
The first fact which strikes one is the
much greater milliampere-hour capacity of much greater milliampere-hour capacity of
the PP9 than the PP6 and of the PP6 than the PP3, in each case the ratio approaching 6:1. Yet the price differential (by comparison) is tiny. It would therefore appear at first sight that it ruust always pay to use th of being accommodated within the case of equipment. In general this is true, except for an equipment drawing only a ver small current and/or receiving only ver occasional use. Under these circumstances before dying of "shelf life", and a smaller cheaper battery would be a more sensible choice. In fact if the current drawn is very small - microamps or up to a milliamp or
so - it is worth considering saving the cost of a switch entirely and letting the equipment run continuously. It is in any case good practice to replace a layer type bat tery every year, regardless of how much or little use it has had, although in a tempe rate climate they will often remain ser-
viceable much longer than this. In tropical climates routine replacement after 6 to 9 months is recommended.
The circuits of Figs. 3 and 4, when 'on'
apply the full battery voltage to apply the full battery voltage to the load circuit, except for a 300 mV . or so drop due
to the collector saturation voltage of the series pass transistor. This being so, the load current is likely to be very nearly proportional to the battery termina voltage, and hence Tables 1 to 3 are directly applicable. (Strangely, this is the which later). Thus if a 9 V battery is to be used, Tables 1 to 3, plus those for the PP4 and PP7 will indicate the optimum style of battery, bearing in mind the load current,
daily running time and acceptable end daily running time and acceptable end
voltage. Having chosen the battery type, a graph can readily be drawn for the appropriate daily usage to permit interpolation between the current values in the table serviceable life. Fig 6 is an example of such a graph, for the PP9 battery at $20^{\circ} \mathrm{C}$, with four hours daily usage, to an end point of 6.5 V . In the author's experience,

Fig. 5. Low battery-voltage indicator. L.e.d.
illuminates when supply falls below
illuminates when supply falls below
designed minimum.

MILLLAMPS AT 9V
Fig. 6. Service life of PP9 battery, used four
the figures quoted in Table 1 are conserva tive, and although there must be some variation from battery to battery, they can
safely be taken as minima rather than typical. This view is confirmed by in formal tests which were carried out some years ago by the laboratories of the Finnish PTT in Helsinki
There is a growing (and welcome) ten-
dency for Japanese and US battery dency for Japanese and destery manu their products rather than using thei national or in house codes, and we can expect U.K. manufactu he next year or two.
warning that attempts to recharge them ar futile and can be dangerous. Recharging leads to the evolution of gases which the sealed cell cannot vent and the cell constit uents cannot recombine. In the case of a
layer-type battery, the gas evolved forces the layers apart, resulting in an open cir cuit battery.
Stabilized supplies
A piece of electronic test or measuring ten required to possess a degree of accuracy and stability which can only be ob tained by operation from a stabilized

WIRELESS WORLD FEBRUARY 1981 supply voltage. The current drawn by the
 is thus no longer and the data in the tables flash lamp likewise tends to be a constant current load, due to its high temperature coefficient of resistance - remember the barretter? On the other hand, the motor of a battery-powered turntable or tape transport with a mechanical or electronic gover the current drawn actually rises as the battery terminal voltage falls. In theory, one could design a switching regulator for the stabilizer of our piece of electronic equipment, so that the current drawn from fresh
batteries was actually less than that consumed at the stabilized voltage, rising to the same current as the battery terminal voltage fell to nearer the stabilized voltage. In practice, for a stabilized voltage of two thirds of the nominal battery voltage,
e.g. 12V for two PP9s in series, the efficiency of a conventional stabilizer is almost 66% if the housekeeping current is low, rising to well over 90% at end of life battery voltage. This can be held to less than 12.5 V , i.e. an end point of barely over energy usage over the life of the battery is thus over 80%, a figure it would be difficult to better economically with a switching regulator, which would also sitive measuring instrument. Thus supply stabilizer for a dry battery operated instrument is likely to be of the conventional series type and the battery current drawn is virtually constant. To estimare tables such as Tables 1 to 3 cannot be used directly, and the following method should be used.
For an initial battery voltage E_{1}, an end-of-life voltage E_{2} and a constant current I,
the initial load resistance $R_{1}=E_{1} I$ and end-of-life load resistance $R_{2}=E_{2} / I$. The effective load resistance R_{e} is defined as $R_{\mathrm{e}}=\left(\mathrm{R}_{1}+R_{2}\right) / 2$ and Fig. 6 gives battery life, taking $I_{\mathrm{e}}=E_{1} / R_{\text {e }}$.
Since $I_{\mathrm{e}}=2 E_{1} I / E_{1}+E_{2}$, the end-of-life $1.5 \mathrm{~V}, I_{\mathrm{e}}=1.2 \mathrm{I}$.
An automatic delayed switch-off is just as desirable in a battery-powered instrument incorporating a stabilizer as in one of Fig. 3 incorporates a couple of tran sistors, and it would be elegant and economical to make these function also as the stabilizer circuit. This can be done with just a few extra components, as Fig. 7 of the complementary latch in Fig 3 is completed only via the CD4060 pin 3 output, that in Fig. 7 is completed independently of the i.c. When the zener diode is not conducting, loop feedback is positive and one of the two stable states is with sistor starts to conduct, the collector voltage of the BC 109 will fall rapidly until the zener diode conducts, at which point he loop feedback changes from positive to netablished. This persists until a count of

2^{13} is reached, when the output at pin 3 of the CD4060 rises to the positive rail, switching off the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor via the off and the 'on' period terminates. The $10 \mathrm{k} \Omega$ resistor at pin 3 of the i.c. is necessary to guarantee the switch-off of the BC214, since the p-channel output device in the CD4060 cannot achieve this unaided when the voltage be
falls to a low value. Will the the no load connected, the output voltage will equal the battery voltage whilst the 'on' push button is closed. This applies equally at switch-on and when updating the on
period. However, for any completed instrument design, once the load current is known, it is a simple matter to calculate an appropriate value for R_{1} which will rethe designed stabilized voltage. In practice also one would provide a preset potention meter as part of the $\mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$ chain to allow adjustment of the voltage at the base of the BC214. This will enable the stabi -12 V exactly, despite the selection olerance of the zener diode.
As the analogue delayed turn-off circuit Fig. 4 also includes a p-n-p and an n-ptransistor, it should be a fairly simple mat ines of Fig 7 polarity of course. Such an analogue timed stabilizer could be useful where the instrument it powers might be troubled by the witching edges of the oscillator in Fig. viously cannot usefully be connected
across the output of a stabilizer, nor, al though its housekeeping current is only a fraction of a milliamp, would one want to battery. Fig. 8 shows how it can be dapted for use with the stabilized delayed switch-off circuit of Fig. 7. The $22 \mathrm{k} \Omega$ potentiometer would, of course, be set to ndicate a battery end voltage of 12.5 V . Tables $1-3$ are reproduced by kind Great Britain) Ltd. This company operates internationally under the trade name "BEREC" and has no connection with Union Carbide, which uses the trade
mark "Eveready".

Amateur radio and

illegal c.b.
Police investigation of illegal 27 MH "citizens' band" activities continues to in-sual-looking aerials, sometimes resulting in radio amateurs experiencing consider able difficulty in proving that their trans mitters are legal. Since amateur licences are not computerised, immediate confir police data networks, although it seem likely that this information will in time be tored on a Home Office computer and hus become part of the amateur

Programmable bandpass filter

This design simulates a resistor, $\mathrm{R}_{\text {eq }}$, by
switching a small capacitor, C rate f_{r} in the frequency range 50 kHz to 50 ckHz . The size of the equivalent resistor is $1 / f_{f} C_{u}$, and a multivibrator circuit for
simulating $\mathrm{R}_{\text {e }}$ is shown in Fig. simulating R_{eq} is shown in Fig. 1. Th a dual switch, type TL 191 CN. Clock frequency is set by the RC networks to, say, 100 kHz and this circuit replaces resistors $R_{F 1}$ and $R_{F 2}$ in Fig. 2. Centre fre
quency of the filter,f_{0}, is $1,592.10^{8} / R_{\mathrm{F}}$ quency of the filter, f_{0}, is $1,592.10^{\circ} / R_{\mathrm{F}}$
$1,595.10^{8} f_{\mathrm{r}} C_{\mathrm{u}}$ assuming $R_{\mathrm{F} 1}=R_{\mathrm{F} 2}$ $1 / f_{r_{C}} C_{u}$. Under this condition Q depends on $\mathrm{R}_{4}, \mathrm{R}_{\mathrm{G}}$ and R_{Q}. Gain, A_{BP}, for the pass band is $5.10^{4} / R_{\mathrm{G}}$, so $R_{\mathrm{G}}=5.10^{4} / A_{\mathrm{BP}}$,
and $R_{\mathrm{Q}}=5.10^{4} /\left(2 \mathrm{Q}-1-A_{\mathrm{B}}\right)$ $\mathrm{d} R_{\mathrm{Q}}=5.10^{4} /\left(2 Q-1-A_{\mathrm{BP}}\right.$
Butterworth or Chebyschev band-pole filter where Q_{BP} is $25, f_{\mathrm{c}}$ is 1.5 kHz and A_{BP} is unity.

Computed values for Fig. 3.

	Butterworth	Chebyschev
$f_{\mathrm{n} 1}$	10.01424	1.02028
$f_{\mathrm{n} 2}$	0.98596	0.98012
Q_{1}	35.36850	35.08733
Q_{2}	35.36052	35.07999
$C_{\mathrm{u} 1}=C_{\mathrm{u} 2}$	95.6 FF	96.1 pF
$C_{\mathrm{u3}}=C_{\mathrm{u} 4}$	93 pF	92.3 pF
R_{G}	$50 \mathrm{k} \Omega$	$50 \mathrm{k} \Omega$
R_{Q}	1040Ω	1040Ω

Operation of the band-pass is corrected by slight variation of the clock frequency f_{r}.
K. Kraus

Eipovice
Czechoslovaki

Fig. 2

Fig. 3

Improved audio-visua circuit

The.

 here several locations or sub-systems ar system, it is common to have an audible alarm, which is activated if a monitor point is triggered, and an array of visual indicaors to show the particular location(s) large number of inputs, this system can be costly in terms of wiring and connectors. A simpler solution is to use the l.e.ds as OR gate, with the output as a current to round which can be detected by a curren asonably high, Tr_{1} must be a mecom power type. Although this unbalances the current mirror, linearity is not important in this switching application. The final pull-up. With this arrangement only one input connection is required for the audible alarm.

The mirror can also be used in an analogue mode for current to voltage conver sion where the output represents the number of l.e.ds turned on. The output
can either cover all possible states, or T_{r} can saturate with, say, four or more 1.e.ds and operate an extra alarm when a pre-set number of faults require attention. Note that ac inputs and indicators can be used if a diode is connected across the base-emit-
ter of Tr_{1}, and Tr_{2} output is taken through a retriggerable monostable.
T. M. Forcer

Ringing-tone generator

A reasonable approximation to the standard telephone ringing tone can be achieved with two i.cs and two transistors.
A c.m.o.s. oscillator/binary divider generates both the tone and the gating signals so, in the quiescent state, only c.m.o.s. current and transistor leakage current is drawn. The output-stage values are appropriate for a V_{DD} of 10 V and a low voltage
supply of 4 V Resistor R_{1} gives a f. warble on the tone and can be omitted if this is not required.
T. Williams

Tunbridge Wells
Kent

Wide-range p.p.m.

By using the exponential conduction characteristic of a silicon diode, a l.e.d. bar or range of 40 dB can be achieved range of 40 dB can be achieved by Tr_{2} and C_{4} to produce a near constantcurrent drive to D_{1} and D_{2}. The clipped ignal is then amplifed to drive a rectifier ransformer, and Tr_{5} maincains a constant D_{3}. Capacitor C_{8} and R_{14} determine the rectifier discharge time-constant, and IC_{1} buffers the output. The l.e.d. driver, $\mathbf{I G}_{2}$, supplies 15 mA through the display diodes, during large input signals.
To adjust the circuit, set R_{24} for maximum input, R_{25} to the mid-position and 26 to maximum resistance. Apply 12 and feed a lkHz signal of at least +12 dB

the input. All of the l.e.ds should turn on. Reduce the input to 0 dBm and adjust R_{24} until l.e.d. 8 is just extinguished. In until l.e.d. 10 is just on. Repeat the last two adjustments as necessary. Reduce the hput to -30 dBm and adjust R_{25} until l.e.d. is just on. Re-adjust R_{24} and R_{26} if necessary.
The cal
he calibration should now be within lower sensitivity limit can be extended by connecting a 33Ω resistor in series with $\mathrm{D}_{3} . \mathrm{R}_{25}$ can then be adjusted so that l.e.d. the scale below an input of -55 dBm , bu recalibrated.
The circuit is fairly sensitive to temperaure variations, due to the characteristic D_{1} and D_{2}, but it is nevertheless usefu
in studios and other controlled environ ments.

N. McLeod Hove

E. Sussex

If everything were perfect...

It is rarely necessary to have to boost the bass response of a top quality high fidelity system, (although the Quad 44 tilt control does enable subtle changes to be made to the overall balance of the programme), but there are a number of high quality loudspeakers on the market, which because of their Lilliputian dimensions, necessarily have attenuated low frequency response and the Quad 44 is fitted with a bass control which in the lift position provides optimum equalisation.

Considerations of domestic harmony frequently dictate loudspeaker placement that is less than ideal. The almost inevitable result is the excitation of the fundamental eigentones of the room
and music reproduction with a characteristic and unpleasant honk.

The step side of the Quad 44 bass control switch eliminates this problem without rolling off the low frequency information, simply by putting a 5 dB step in the frequency response, reproducing domestic bliss and a closer approach to the original sound!

To learn all about the Quad 44 write or telephone for a leaflet.

The Acoustical Manufacturing Co. Ltd., Huntingdon, PE18 7DB. Telephone: (0480) 52561.

OUAD

for the closest approach to the original sound
 QUAD is a registered trade mark.

Semiconductor Supplies International Ltd.
 Sutton, Surry, England, SM1 4RS
Tol: 01-43112 (Sales) $01-6430829$ (A/C Dept.) Toll: 01 -643 112
Tolex: 946650

피.8:8. 8

BUILD YOUR OWN HIGH ACCURACY $31 / 2$ DIGIT PANEL METER

Teledyne Semiconductor has introduced two evaluation kits for the
new $7106 / 71073^{11 / 2}$ Digit Monolithic CMOS A/D Converters. The kits new $7106 / 710731 / 2$ Digit Monolithic CMOS A/D Converters. The kits are simple to use and will measure AC and DC voltages, multi-range sions.

The 7106 kit uses a liquid crystal display and is normally powered by a single 9 V battery. It is portable, can be used inside or outside and will not fade in sunlight. The 7107 kit uses light emitting diode displays and requires an external power supply. It operates under normal ndoor ambient light conditions. Both kits include parts for 200 MV ful scale. The kits use the 1.C. internal reference, when be be modified to operate from an external reference where higher stability is required.

Each evaluation kit contains one I.C. (either 7106 or 7107), one display (either LCD or LED), a PCB, passive components, miscellaneous hardware and a detailed 6-page application note.

The comprehensive application note contains all assembly instruc tions

THE 7106 EVALUATION KIT COSTS
£ 17.44 + VAT THE 7107 EVALUATION KIT COSTS £ 14.31 + VAT

TELEDYNE SEMICONDUCTOR

PLEASE CONTACT OUR SALES OFFICE FOR FURTHER DETAILS ON
DATA CONVERSION PRODUCTS (A/D; D/A; V/F; F/V; IC. Voltage References)
WE ALSO STOCK THE $3 ½$ DIGIT L.C.D. DISPLAY (12.7 mm CHARACTER HEIGHT) FROM BROWN BOVERI wW-074 FOR FURTHER DETAILS

Interfacing microprocessor systems

The control of industrial plant and simulator circuits
by P. Jackson and S. O. Newstead

Several microprocessor systems ar available, either in kit form or assembled, which can be adapted to control plant. These systems are usually modified desk-top computers with connections
Although many training establishments purchase such systems to teach programming, interfacing the microprocessor is not always tackled. This article outlin interface circuits and describes a simple boiler simulator suitable for microprocessor control.
Interfacing circuits for plant control should enable a microprocessor to read an convertor and read the output, switch external devices on and off independently, and output an 8 -bit digital number. The first function is useful when several pieces of equipment are monitored. For example,
when raising steam an oil-fired industrial heating boiler must have a flame, an induced draught fan and a forced draught fan in continuous operation. A sensor on each fan and a sensor on the flame, whose outputs are converted to logic levels, can
be read as the three 1.s.bs of an 8 -bit number with the remaining bits connected to ground.
A subroutine which deals with this mo itoring process can be written as follows, ROUTINE NO. 1010
1000 RETURN
1020 IF A=7 GOTO 1000
1030 IF A=0 PRINT "ALL SYSTEMS 1040 IF A=1 PRINT "F.D. \& FLAME FAIL,

1100 WRITE 30.
1110 GOTO 600
The digital number is read into the microprocessor and stored in memory loinstruction 1010 is discussed later. If the plant is operating correctly, the program leaves the subroutine. However, if there is a fault it is displayed on the
v.d.u., instruction 1100 switches on an v.d.u., instruction 1100 switches on an
audible warning and the plant closes down. Instruction 600 is assumed to be the start of the closing down routine. A pro-
gram stop can be included in this routine as follows,

650 IF A=7 GOTO 670
660 STOP

Therefore, a healthy system can be tempo-

Fig. 1 (a). 16 -address demultiplexer. If ports 8 to 15 are required, use 74 LS 138 in place
of $74 L S 154$. Control signals from a microprocessor system may be $\overline{R D}$ and WD to distinguish between read and write, with 1 OREQ and MREO to distinguish between input/ output ports and memory. Alternatively, they can be Io 10 and IOW with MR and MW. In this case $\frac{10}{\text { IOREQ can be achieved as shown in (b). }}$

rarily closed down, and a faulty system closed down permanently. The secon function is useful whenever an analogu temperature, acidity, rate of flow or position measuring devices. The program must be held until the a-to-d converter ha counter and a comparator, the time for th converter to operate is proportional to the magnitude of the analogue signal. The sta tus strobe from the converter is therefore
used to hold the program.
The third function, switching external
devices on and off, is the control of the devices on and off, is the contro of the
plant by the processor. The final function, which gives an 8 -bit digital number as an. output on eight lines, can be used when variable control signals are needed. A programmable power supply in automatic
way, When designing interface circuits, the When designing interface circuits, the
Wanals available from the c.p.u. must be signals available from the c.p. c .
considered together with the system it is considered together the plant to be
connected to and the re fully buffered and will drive 74LS logic, others are unbuffered and will drive c.m.o.s. As the interface circuits will probably contain a mixture of 74 LS and 74 gates, control signals from the micropro-
cessor must be buffered, and a c.m.o.s. 4050B provides six buffers at a reasonable cost. If the microprocessor contains a large memory, c.m.o.s. buffers may be needed
between address, data and control busbars etween address, data and control busbars but this is a matter of judgement.
Some microprocessor systems already ontain ports, and the process to be described assumes that these exist but addiional ports are needed. The ports which
are added to the microprocessor, and through which the four functions listed previously are carried out, need to be ddressed. Microprocessors have 8, 12 or, more usually, 16 address lines which form buffered to cope with the complete memory, 64 K for 16 address lines. For port use, the eight least significant lines A0 o A7 are available together with the input/ output read (IOR) and inputoutput writ are used when read and write instructions are reached in a programme.
Although machine code can be used to fetch data from a port or to output data 10 nother port, because it is generally easier examples given here are in BASIC. A system as purchased may contain some ports which use addresses 0 to, say, 7. Additional ports for plant control can therefore be numbered 8 to 25 , using A0
to A7. To obtain 16 extra ports use Fig. 1, or Fig. 2 for 32. C.m.o.s. buffers have been included but it may be possible to use 74LS154 devices and omit the buffers. To read an 8 -digit number, connect the eight of the tristate buffer in Fig. 3. An instruction such as 30 READ 26, B will cause address lines $\mathrm{Al}, \mathrm{A} 3$ and A 4 to go high, and when the IOREQ pulse reaches the demultiplexer in Fig 1, line 26 will go low. high. high.
While the IOREQ pulse is present, the
ID pulse is received by the tristate buffer $\overline{\text { RD pulse is received by the tristate buffer }}$
in Fig. 3. This pulse, together with in Fig. 3. This pulse, together with
address 26 , openis the buffer and connects address 2 , openis the buffer and cons. During the RD pulse the buffer in the c.p.u. opens and closes to load the number on the data bus into a register. Several tristate buffers
can be connected to the data bus and selec-

Fig. 3. 8-bit number injúut using a tristate buffer. In some systems ports are addressed on address lines AO to A7 and data is transmitted on data lines DO to D7. Other systems reserve data lines for memory data and use a ddresss lines A8 to A15 as data lines whe
ports are addressed by A0 to A7. This should be checked in the c.p.u. manual.

Address line
from demultiplexer
ren
(e.. 7)
ig. 4. Output latch. Q is set to DO when the IOREO pulse strobes the address \&emultiplexer. An 8-bit number can be latched into an output port by using eight latches fed from DO to $D 7$, and connecting the G pins in paralle.

WIRELESS WORLD FEBRUARY 1981

ted in turn by each address. If the input to one of these buffers is obtained from an a-to-d converter, three instructions may be pulse which sets the converter counter to zero and starts the count. At the same time, the c.p.u. is set to a Hold mode which prevents it from advancing in the program until the wait signal is removed from the a-to-d converter. The second instruction reads data into the c.p.u., and the third instruction resets the latch set by the first instruction. Typical instruction to read an analogue signal from address 20
${ }_{80}^{\text {are, }}$ WRITE 19 ,
90 READ $20, \mathrm{Q}$
100 WRITE 19,0
where 19 is the address of the latch which starts the converter. In this example,
which uses the circuit in Fig. 4, the least significant data line is coupled with address line 19 to operate the latch in two ways. If this is not done, two address lines must be used, which makes the data
quoted in the write instruction irrelevant. This method is advantageous when surplus address lines are available.
External devices may be switched by latches with different addresses as shown in Fig. 4, or eight latches with the same
address, connected to D0-D7, can output an 8 -bit number. These can also be viewed as eight separate switchable lines. If reed relays are driven by the 74 logic which makes up sible to control many types of plant.

An oil-fired boiler simulator for microprocessor control This simple model illustrates sequential switching of equipment, monitoring of the plant by reading a digital number and takogue number via an a-to-d converter analogue number via an a-to-d converter and
taking action based upon its value, use of a software time delay after switching a device on and then verifying that the device is operating, printing pressure and tempe-
the event of major failure within the plant, fosing down and locking out the plant followed by a prim out of the failures and an audible alarm. The boiler simulator comprises an inWhen the starters are switched on, these fans gradually run up to speed so the fanrunning signal is subject to a delay. When
the boiler is started, the fans must run for the boiler is started, the fans must run for a
while to purge the furnace before fuel is sprayed in.
A fuel pump, which must not be switched on unless the furnace has been purged, the fuel has been heated above the has been switched on. A flame detecto appear a short time after the fuel pump has been switched on and, if it does not appear, the boiler must be shut down. The microprocessor can be programmed so that
a flame failure stops the fuel pump, purges the furnace and attempts to ignite the boiler again.
A fuel hea
A fuel heater. This is easily switched on, but a check can be made by measuring the fuel temperature, switching on the heater,
Prototype boiler simulator
the fuel temperature again and checkin that the temperature has risen. The logic, is 74 series throughout does not provide latches in the simulator because they are part of the outpu logic 1 applied to the fan start input of Fig. 5 switches the starter 1.e.ds from red to green. After a short delay the red I.e.d. which indicates that the fan has run up to speed, turns on and a logic 1 appears at the
fan-running terminal. The delay must b allowed for by the software. This circuit can be used for both fans and for the fue pump with a smaller capacitor to simulat , the faster! response. If the fan-failur switch is closed, the starter will op
but the fan will not run up to speed. The a-to-d converter in Fig. 6 gives an output proportional to the fuel temperature. This output is between 00 and FF ($(0$
and 255) and can be displayed and 255) and can be displayed as ${ }^{\circ} \mathrm{C}$ with-
out scaling. Once the oil is alight, the ignition can be switched off. If the fuel pump stops, however, the flame will go out Flame failure and ignition failure can be manually introduced at any time as shown in Fig. 7 and the program should cater fo these eventualities.

- oil fired boiler system

Digital noise filter

Simple design suitable for electronic clocks

Athough 1.s.i. techniques and mass prouction have produced reliable low cost digital clocks, the logic circuits are still susceptible to false triggering pulses from electrical noise and switching transients. A
common solution to this problem is the addition of a carefully designed low-pass filter, but, in some applications, this does not always remove the problem. A more ffective solution is the addition of a simple digital noise filter which can elin A typical digital clock arrangement is hown in Fig. 1(a) and a modified circuit is illustrated in Fig. 1(b). The filter is based on a non-retriggerable monostable, shown smaller than the period of the incoming pulses in Fig. 3. In most clocks i.cs, the ime reference is derived from the mains frequency, therefore, $T=1 / 50 \mathrm{~s}$ and riggerable, the clock is immune to noise which occurs during the t period in Fig. 4. If a false pulse appears in the $T-t$ region, the monostable is triggered but the next correct trigger pulse occurs within the new range and is rejected. Therefore, the rephase error only lasts for one pulse. Clock accuracy can only be affected if a continous stream of noise pulses occur during he $T-t$ region in a (T/T-t)-1
a higher noise mmunity coefficient n but, usually, t cannot be longer than 95% of T due to the stability of the circuit. If this filter is to be used in a very noisy environment, the will improve the performance. Application of this circuit is not limited to digital clocks because the design can be extended to any digital signal which has a periodic nature e.g., the synchronizing signal from a communicatiof modem.

[^1]

Fig. 1. (a) Typical digital clock arrangement, (b) mòdified system incorporating a noise

Fig. 2.
filter.

Fig. 4. Input and output signals with noise
pulses present pulses present.

Multiplex keying system for organs - 2

A practical solution to the wiring problem of multiple key contacts in pipe or electronic organs
by A. W. Critchley, Dipl.EI., M.I.E.R.E.

TDM system reduces drudgery and
cost of building an organ, whether cost of building an organ, whether pipe, electronic or hybrid. It permits wide range of organ features, many organs, allowing closer simulation of pipe organs at a fraction of the cost. The principles can easily be adapted or microprocessor control at a much ower hardware cost and complexity

As demultiplexers comprise not only a sig nificant part of the electronics but also a source of complexity it obviously pays to use the extension principle, see part 1 . The various manual outputs come out of they must be delayed to arrive at a common demultiplexer at the same time. So manual scan period delays are necessary when collecting the voice outputs for an xtension organ, but not for the traditional one.

Mixture stops

These are normally found only on the large pipe organs and almost never on cinema organs. The principal reason is that each stop. They have a peculiarity in that the notes sounded are always toward the top of the range, no matter which keys are played, to add brilliance. To achieve this the individual ranks break to lower notes as they come in turn to the top of the
keyboard. These breaks occur at different places in the scale of the manual.
To be strictly musical these stops should key generators which are independent from the rest of the organ (and have no tremulant on them either) as the pitches
are supposed to be true harmonics of the keyed pitches. This is really a question for argument amongst purists but the reasoning is that the multiple notes sounded generate beat frequencies which other low harmonics of the keyed notes. With common generators this does not happen due to the deliberate mis-tuning of the even-tempered scale and the resulting beats are off tune.
or most purposes this does not matter too much as a pipe organ is full of mis-
tuned beats at the best of times (the chorus effect) due to the many independent pipes - especially so when mixtures are likely to be used. In an electronic organ of one generator rank it is a different story. Still,

Fig. 7. Simplified pitch selection system for two-manual church organ, resulting in three demultiplexers instead of six.
any mixture is better than no mixture and it is simplicity to provide one with this
system. The method is shown in Fig. 9 which shows how to generate a four-rank mixture stop as found on a large organ. This one is based on the one found on the choir manual of St Albans cathedral organ. The range of notes played is from 45 to generators is $1^{1 / 3} \mathrm{ft}$ but. the maximum pitch relative to a key is $1 / 4 \mathrm{ft}$ (for notes 1 to 12). The pitch shift register thus has to extend for five octaves beyond uniso pitch in or
mixture stop.

Composition of a fóur-rank mixture
Played Ranks Notes played
 $13-202226293349-5657-6461-68$ 69-76
$21-331922262952-64$
$57-6965-77$
$69-8$ $34-441519222658-68$
$4555-75$
70
$70-80$
78
$78-8$ 45-51 $52-61$

The unison pitch' delay due to sub-octave coupling and 32 ft pitch generation
amounts to three octaves. With the five octaves required to generate up to $1 / 4 \mathrm{ft}$ pitch for mixtures, eight octaves have to be added to the six for each keyboard scan to results in a total of 14 octave pulses. It would be reasonable to settle for the good binary number of sixteen which then allows for a super-octave coupler (2 ft pitch) if desired. A further keyboard scan
period could be added to cater for other contact data such as stops, pistons, etc. Sixteen octaves contains 192 pulses (keys). This is convenient as a suitable c.m.o.s. shift register contains 64 bits so hat three packages would give the correct

Demultiplexing
Conversion of the serial data back into parallel information to switch on and off multiplexer consisting of a D-bistable per pitch and a decoder which sequentially clocks them, Fig. 10. The data inputs of all bistables are paralleled and each clock input receives one clock pulse per complete therefore incremented in scan and faithfully follows the original keying.
There is unfortunately a practical problem with this arrangement in that the intedata inputs and a common clock input. To overcome this, another shift register with taps at every stage is used to drive the data inputs sequentially whilst the clock input of the bistables receives a single clock
pulse per scan. The clock input of the shift register is driven at the data pulse frequency. Fig. 11 shows the practical system.
The outputs of the bistables operate whatever form of keying circuit is to be
used; a c.m.o.s. transmission gate is one possibility. A transistor interface would be used to drive a pipe organ magnet when the demultiplexer could be mounted on the pipe chest and thus save more wiring.

Automatic peda

Pianists are sometimes called upon to amaze onlookers at an organ but are not able to perform adequately with their feet nswer!
The pedal department can be played from the lowest note only of whatever is being played on the manuals, usually the great manlal. Due to the scanning process, the first note obtained from, the manual is also the one of lowest frequency.
The simple circuit of Fig. 12 obtains this note and ignores the rest. The input data sets an R-S latch which can be set only once by the input data if enabled by the great gating pulse. The resulting pulse is edge. This signal, together with a pulse occurring just before the great scanning period, reset a counter clocked at note ate. Its period is sufficient to place the

Fig. 8. Voice collection system for extension organs (simplified)

Fig. 9. How to generate a four-rank mixture stop as found on a large organ (based on St

Fig. 10. Serial decoder to sequentially clock them

WIRELESS WORLD FEBRUARY 198
note to be played in the pedal scan time it must be less than one total scan. A Dbistable and nor-gate reduce the long pulse from the co The outp
to prevent the pedals from being operated by high notes on the manual. It could also "break back" the pedal notes to the lowest octave whichever keys were being p payed if
a variable shift register were also included.

Automatic melody
With a small organ it would be useful to be able to solo and accompany on the same manual without the bother and expense of
second-touch keys or spliting the key-second-touch keys or splitting the key-
board. This can be done by extracting the last, or highest, note from the keyboard in use and using it to operate some other keyboard or voice. It is the reverse of the automatic pedal system.
A counter with a period at least equal to
the delay between the played note and the note to be played is clocked at the note rate. It is continually being reset by the input data from the manual so that the counter produces an output change at the played as a solo. To prevent continuous action, the reset-pedal is fed with a pulse which disables the counter after the time required to produce the output. If no notes are played, the counter will not then give a convert the counter output back to a single note-wide pulse. Fig. 13.
For soloing on the same manual with a different voice, a complication arises in hhat the counter has to be reset just before
that manual can operate. So to get the information to the voice demultiplexer requires that the counter have a delay to one total scan less one manual scan and the manual scan is made up with a shift regiser to render it coincident with the original note.

Percussive action

For bells, chimes and similar percussive Foffects, each note has only a short duration also has to operate whether or not other keys are held down on the same manual. This is achieved by digitally shortening each note in the serial data stream for a particular demultiplexer. One such circuit plexer. Each note has its own decay system as required for the voice effect which is part of the demultiplexer.
A suitable period for each note to operate is perhaps two scans of the organ
$(1 / 50$ second, say) and the delay is provided by a shift register.
An AND gate cancels out any pulses after the two scan periods. The shift register must be clocked at note rate but the total delay has to be in increments of the
total scan time to effect cancellation in the gate. This gives a long shift register, Fig.
14. One of these circuits can handle all the percussive requirements of the entire or-
gan if the output is routed and gated by appropriate manual gating pulses. With

Fig. 11. Practical demultiplexer uses additional shift register to drive data inputs
sequentially whilst the clock input of the bistables receives a single clock pulse per scan

Fig. 12. Pedals can be played from the lowest note only of whatever is being played on the

ig. 13. Solo and accompaniment can be obtained from the same manual by extracting the highest note in use.

Delay. For percussive effects each note has to be shortened to two scans of the organ.
further delays in increments of manual scan periods it can also provide pizzicato
coupling between manuals. These delays already exist in the coupling system so that all that is required is some logic.
Pizzicato coupling can also be used to momentarily key in noise or harmonics in electronic organs in order to simulate
starting tones or chiff in flute and diapason pipes.
As the percussion output ceases if the notes are held down, it follows that a pulse will occur every time any note is changed
even if the rest are still down. This is very even if the rest are still down. This is very possible merely by gating out each manual or pedal scan to a simple percussion effect generator without the need for a demultiplexer. This is not possible on theatre or-
gans where the key contacts were simply gans where the key contacts were simply Microprocessor cont
Microprocessor control and ther possibilities
The multiplexing system is an ideal application for a microprocessor. It could be hardware than indicated, but at a great ost in programming. Basically, the organ can be considered to be a large programbeing altered by the player. A sequential scan can be generated by the microprocesor in 8-bit format instead of 12 and the data stored in a holding store.
All stops, couplers, keys, switches and store which then contains all the data available. The program then consists of manipulating the contents en route to another output store according to the presence or ance, to add an octave needs the microprocessor to look for available notes and then add 12 to their addresses. The output store can be read out in serial form or the data can be transfer
he keyers. The same
ypes of organ and the specific details stored in programmable read-only memories
Combination pistons can be included in the scanning process. The bigger organs
have the facility of being able to couple them together in much the same way as the keys, e.g. to couple great and pedal pisons. In any he wiring.
Including
multiplexer clock path or in the data stream gives a method of transposing the pitch of the entire organ - something novel for a pipe organ. Extra pitches are Synthetic stops are sometimes fitted tosmall extension organs and are intended to be used as solo voices. A typical one is the larinet which is formed by keying three $13 / 5 \mathrm{ft}$ This is a form can easily be done by this system. Another synthetic stop is the oboe formed from 4 , $2^{2 / 3}$ and $13 / 5 \mathrm{ft}$ pitches of flute. Acoustical bass, although not musically satisfactory, can be obtained by keying a

Arthur W. Critchley is President of Cross point He is a former committee member of the British Amateur Television Club and has contributed many articles to their maand Wireless World (Aug 71). His interest in organs is purely private, learning to play the church organ at the age of 14 . kindled his interesters in this instrument and later on he became Minor's organist at a
cinema in Uxbridge, playing for his own cinema in Uxbridge, playing for his own
amusement. A life-long interest in the innards of organs led to several unfinished electronic organs - whoever finishes one
of these projects! They must surely have the highest mortality rate of any home construction project. Presently he is building a three-manual entertainment type of which embodies the primciples outlined in this article.
pedal flute at 16 and $10^{2} / 3 \mathrm{ft}$. Chimes are obtained by using $62 / 5,4,22 / 3$ and 2 ft pitches of flute with a decay. A The-octave range is usual
The data stream can be displayed on an oscilloscope to represent the organ key-
board layout. The trace is triggered at the manual reptition rate and the manual gating pulses used to add different amounts of s.c. to the data to separate the traces. Each black key can be decoded to lift up the
traces more than for a white key. This results in a fair representation of the keyboards.
It is possible to store the data in a memory - perhaps as a way of learning eds situated over each key for teaching purposes. The scanning process could conceivably
be used to generate automatic arpeggios.

Finally, the matically from the memory - shades of yesteryear with player pianos and organs. Sooner or later somebody reinvents a good idea!
Stops Glossary Stops are controls which select either the kind
of sound or the manner in which keys may be of sound or the manner in which keys may be
coupled together. May be \mathbf{a} form of rocker coupled together. May be a form of rocker
switch or drawstop types. Either kind might be electrically operated by solenoids for combinaManuals (keyboards) have various names according to the type or organ; accompaniment, hoir, swell, great, solo, orchestral, echo are typical.
Ranks, complete scale of pipes or other generators.
Magnets, solenoids which control the air feed to Magnets, solenoids which control the air feed to
eeach pipe. Couplers, stops which enable keys to be joined so that one key can also do the job of another, but not in reverse. 8 fis pith.
Mutation, pitch which is not octavely related, Mutation, pitch which is not octavely related,
e.g. $2^{2} / 3 \mathrm{ft}$. e.g. $2^{2 / 3 f f t}$.
Mixture, stops play several high-pitched notes for every key to add brilliance. Second touch, keying a second set of contacts
by pressing a bit harder on the keys or stops, by pressing a bit harder on the keys or stops,
used in cinema organs to permit the playing of a melody and accompaniment on the same manual, isually by one hand!
Octave, twice the frequency, Sub-octave half Octave, twice it frequency,
Tenor-C, the C below middle C or the second C Tenor-C, the botom.
Chiff, splitting sound that some flutes make when they start up.
Voice, kind of sound a rank of pipes makes, e.g. a trumpet.

Pitch, frequency of a note. Refers to the length of an open-ended pipe for the lowest note on the
keyboard which is 8 ft long. An octave up would be half as long at $4 f t$, and so on.
Diatonic scale, doh, ray, me, etc., the white notes only if doh is C .
Fifth, five-note spacing in the diatonic scale e.g. G and C .

TOP QUALITY REBUILT TV TUBES

Rebuilt on the most modern equipment to original manufacturers' specifications

What DVM chip gives you precision reference,overrange and underrange outputs, excellent linearity, digital auto-zero and fastoverload recovery?

The new Ferranti ZN450.

II I also has all the usual features that you expect ina $31 / 2$ digit DVM IC-200 mV full -scale reading, direct drive of a liquid crystal display, differestial inputs, on-chip clock, low power operation overa wide supply voltage range with o external active components. meters, thermometers, multimeters and man, panel applications.

Send for data sheet to:
IC Marketing, Ferranti Electronics Limited, Fields New Road, Chadderton,
Oldham, OL9 8 NP.
Telephone: $061-624$
0515 Telex: 668038

FERRANTI Semiconductors

Tellegen's theorem - some applications

Encounters with a powerful network tool

Although Tellegen's theorem is a

 really basic network theorem, implying as it does a re-statement of the law of energy conservation in networks, it is not very well known toelectronics engineers. This article first electronics engineers. This article first the theorem in terms of energy and power, then discusses an immittance version of it, written for driven networks with storage elements, and
finally gives some examples of its application to practical linear networks.
Tellegen's theorem is one of the most basic network theorems ever formulated, since it implies a re-statement of the law of energy conservation as applied to networks. ${ }^{1,2}$ It offers a highly useful method for analysis
of electrical systems. In mathematical shorthand, the fundamental message of the theorem may simply be stated as $\sum i v t=0$, where i is current, v voltage, and t time The prerequisites for the use of the theorem are knowledge of the network topo
logy, and Kirchhoff's laws. In some inst ances and special cases one need not even know the network topology so long as cer tain mathematical relations pertaining to the network are known. Typically, Kirch theorem together imply Kirchhoff's cur-rent-sum law, and the latter plus Telle gen's theorem imply Kirchhoff's voltage sum law.
The very general nature of Tellegen's theorem is evident from the fact that it holds for non-linear as well as linear net works, whether time-variant or time-inva riant. It holds for the periodic steady state as well as for transients, and for reciproca as well as non-reciprocal networks. With surprised to find that among the many things that can be arbitrary belong also the initial conditions. The excitation of the system can be almost anything, with one or more driving sources, in any mixture of
coherent, incoherent, and random sources. The system can be driven in the steady state, periodic steady state, or transient state, with exponential and sine-wave drive common cases. In spite of all these remar-
kable features the theorem is not well known, or rather, it has remained quite unknown to the practical engineer up to wards the end of the 1970 decade. The reason for this is the stark simplicity of the theorem, its appearance of being self-evitaken for granted.

In this short article we shall stay away from any and all proofs of Tellegen's theo rem. The reader interested in such proofs may consult ref. 2 , which proceeds to show how Tellegen's theorem may be used to derive or prove other theorems. Virtually,
there is no end to the number of theorems there is no end to the number of theorems following quotation from ref. 2 is timely: "There is hardly a basic network theorem that cannot be proved by invoking Tellegen's theorem". A few typical cases are
Heaviside's transient theorem, Van der Pol's transient theorem, the reciprocity theorem, and the reactance theorem. The last two are well known. Heaviside's transient theorem deals with energy supplied during transients in non-linear networks
and Van der Pol's transient theorem pertains to excess electric energy over mag netic energy in a $C L R$ one-port, excited by direct voltage. Actually, when we are using Tellegen's theorem, we are inclined to automatically involve other theorems, and
indeed we shall find this to be true in the following.
Tellegen's theorem implies that the energy entering the system equals that leaving it, some or the departing energy often being changed into other forms of
energy. We may write a basic power rela tion for resistive networks in the simple form

$P_{\text {in }}=P_{\text {dissipation }}+P_{\text {out }}$

Here $P_{\text {, }}$ includes the power contributed by existing dependent sources, if any, th sign of the term being decided by the relative direction of the current and voltage that applies to each dependent source These sources, so common in today's tran-
sistor devices and i.cs, are here of the simple kind $\mathrm{ki}(\mathrm{s})$ or $\mathrm{kv}(\mathbf{s})$, in complex no tation $\mathbf{k I}$ and $k \mathbf{V}$. The proportionality constant k may also be complex. In the following application examples we shall limit ourselves to linear networks.

Reducing to immittance In his theorem formulation, Tellegen em ploys current-voltage products, thu energy. Accordingly, he achieves an elegant treatment, independent of the precise form of the network, its number of meshes and nodes. In communications and electronics, however, many energized net
works are inherently of singe-mesh single node-pair form, or can with a
reasonable amount of work be turned into one or the other of these two forms. Some interesting possibilities now evolve. If, in a given power relation such as equation (1), we divide out the common variable (cur rent in a mesh, voltage in a node pair), one
of Kirchhoff's laws results. If we carry out the same division a second time, an immittance (admittance or impedance) summation obtains, still governed by Tellegen's theorem. While our reduction from power to immittance scarcely requires a theorem
of its own, such a theorem has nevertheless been published. ${ }^{3}$ Written for driven networks with storage elements, the immittance theorem takes the general form

$$
\Sigma[Y(s) \text { or } Z(s)]=0
$$

(2)

Note that this formula is restricted to single mesh and single node-pair net-
works. Like its parent theorem, the immittance theorem holds true whether the network is stable or brought to the point of instability. The summation always yields zero with (2) providing an identity. Thi matter will be clarified in a following without saying that all sources must be converted to immittance by an application of the compensation theorem. Currents and voltages are automatically eliminated.
One important field of application for One important field of application fo-
the original theorem as well as its immit tance version is that of checking already obtained solutions to network problems. Such checking may involve considerable labour, however, particularly for algebraic Sollegen theorem solution may differ con siderably from more common solutio methods, the mathematical tool Tellege has given us is highly useful for checking purposes.
pplication example, conside identified by the following formulas

$$
\begin{gathered}
\mathrm{A}_{\mathrm{s}}=\frac{V_{2}}{E}=\frac{a R_{L}}{r_{0}+(1+a b) R_{L}} \\
R_{\text {OUT }}=\frac{r_{o}}{1+a b}
\end{gathered}
$$

Here A_{s} is the system amplification, $R_{\text {OUT }}$ the system output resistance, r_{o} the in herent amplifier output resistance, R_{L} th load resistance, and a and b initially constants. The voltage $a V_{1}$ marks a dependent
source. Let us dwell for a moment on the derivation of (4). Perhaps the most basi
procedure for that purpose, when the net sources, is to make use of the applied sources, is to make use of the applied
source method. We apply the voltage V_{o} to the output port, determine the ensuing current I_{o} into the network, and then for As another alternative, we may moment go back to the time when Thévenin's and Norton's theorems were combined into a single theorem. ${ }^{4}$ This heorem formulation strongly brought out he idea, already in practical use, to write he Thévenin and the Norton equivaents, existing simultaneously. The proce dure is specifically described by the The-
enin-Norton dependent-source teorem, enin-Norton dependent-source theorem,
his being one of the names under which this theorem appears. ${ }^{5}$ If the driving sources in the two network equivalents under discussion are E^{\star} and I^{\star}, the quo-
tient $E^{\star} I^{\star}$ simply dicts. tient E^{*} / I^{*} simply depicts the output impedance, and this is true whether or no
the network contains dependent sources The starting point for the application of this theorem may be either the given network, or its transfer function, which in our example is (3). Thus (4) is actually inderiving the Thévenin generator and the Norton generator from the transfer function is specifically spelled out in a highly time-saving theorem called the equivalent feature stems from the fact that the output immittance is determined in quite a dif ferent manner, and if the output immittance is all we want, the parent theorem degenerates into the output immittance that indeed (4) is contained in (3), and in such an obvious way that in most network problems the output immittance can be read off directly without the need for any calculations whatsoever
With reference to our example, with (3)
the proper transfer function, the theorem simply states that the output resistance is the denominator, less the term that describes the load resistance. Of the methods discussed above, this is by far the quickest
one, and, like the other two methods, it holds whether or not the network contains dependent sources. But to use this theorem, we must have access to the transfer function in (3)

Practical example

Above we have given particular consideration to output immittance because we wish to make this quantity a key, issue in our application of Tellegen's theorem. The fact, a negative-feedback system, for which Tellegen's theorem, as given by (2), simply takes the form $\Sigma r=0$. In summing up the resistance around the mesh we are using the immittance theorem, and as we identity $0=0$. However, the interested reader may instead use power, following the formulation of Tellegen's theorem, and certify that the net result is precisely the same identity $0=0$.

Fig. 1. Simple operational amplifier with negative-feedback voltar dependent source a V_{1}.

The steps in using the immittance theo rem are as follows. First we apply the compensation theorem to the source $a V_{1}$ t turn it into resistance, then sum up al sistance, writing

$$
-\frac{a V_{1}}{I_{2}}+r_{0}+R_{L}=\ddot{0}
$$

The first term here represents a negativ resistance. Eliminating all variables with
the aid of the relations $V_{1}=(E-b V)$ and $V_{2} / I_{2}=R_{\mathrm{L}}$, and using V_{2} / E from (3) we quickly find the identity $0=0$.
Knowing that Tellegen's theorem expect that the mathematical reasonin above would remain the same if the network instead had positive feedback. Th switch from degeneration to regeneration can be accomplished simply by a change of conclude that the identify is independent of the sign of b. The reader can easily verify that this is the case. If we keep increasing the regeneration in a practical where we must accept non-linearity, and thus give up the use of a linear network theory approach. In theoretical work, however, we have the right to assume that the system remains linear up to the "takecannot proceed beyond this point with linear network theory, but Tellegen's theorem is equally valid after surges and oscillations have commenced. This observation is an important one.
Returning to our application example, of an obtained identity holds true even when the system becomes unstable. As the network attains self-excitation, it main-
tains currents and voltages although mhere is no applied signal voltage, and with there
the $b_{c} V_{2}$, our summation takes the form
$-a b_{c} R_{L}+r_{o}+R_{\mathrm{L}}=0$
where b_{c} is the critical value of b. Solving for b_{c}, we obtain

$$
b_{c}=\frac{r_{o}+R_{L}}{a R_{L}}
$$

Turning this around and claiming that we have available the information of b_{c} in (7), we can quickly establish the significant
identity $0=0$ by inserting b_{c} in (6). In the
bove examination of the network, we arsame result obtains if we instead work rom the transfer function in (3) and insert $-b_{c}$ from (7) in its denominator.

Stability considerations

 If our aim is to establish the stability con ditions for a network in general startin from the network, the above discussio hows that the summation of power, or, the simplified case, immittance, will pro vide the answer. In the many cases wher he pertinent information is given by fowork either known or unknown, Telle gen's theorem guides us, however, to much more direct and time-saving proceure. We are already familiar with th setting the denominator in transfer unctions like (3) equal to zero. We shal now find that in cases where the only avail able information is a port termination for ula like (4), Tellegen's theorem again most direct way. While Tellegen did not present his theo rem as a stability criterion, it nevertheless contributes this information, and indeed, in certain applications, it provides an excellent and time-saving stability criterion In his original theorem formulation, em ploying power, Tellegen implies that, unless the power in a port load "sees" itself inside the port with the opposite sign in
the power summation the sysem is the power summation, the system is no
lossless. In the simplified case of a single mesh or a single node pair, the correspond ing statement is that unless the load immittance "sees" itself inside the port with the opposite sign in the immittance summa
tion, the system is the immittance theorem, and with reference to our example, the consequence of this reasoning is the simple stability criterion_{7}
$R_{\text {OUT }}=\frac{r_{0}}{1-a b_{c}}=-R_{L}$
which directly gives b_{c} in (7). On the other hand, (8) is the direct result when the transfer function denominator $\left(R_{\text {out }}+\right.$
R_{L}) is set equal to erer. The point is $\left.R_{L}\right)$ is set equal to zero. The point is that
the transfer function may be unknown but a formula for the port output immit-
tance is known. In passing, we shall make use of at least
one other method for determination of the one other method for determination of the
stability conditions in the given example, 1. In our example, the feedback transfer function is $H_{c}=b_{c}$, and A is obtained from. (3) with $b=0$. We find that $b_{c} A=1$, solved for b_{c}, yields (7).
If we go the route of (8) to find the
stability conditions, stability conditions, we must know the
output immitance. Our entire problem may simply be to determine this immit tance. We have already learned how to do this when the proper transfer function is known, but now let us instead assume that
it is the network that is known. Equation (8) then hints a very direct method of determining output immittance from a given
network. We must find the ratio of r_{o} to (1

TIRELESS WORLD FEBRUARY 198

- $a b$) whatever value b has up to the value b_{c}, but certainly R_{L} must not appear in our
calculation although clearly R_{L} controls the mesh current. However, in the very specific case of $R_{L}=-R_{\text {OUT }}$, we don' mind that R_{L} appears in our derivation This is the key to the procedure, Telle gen's lossless condition gives us the matheterminate the port in - Rout instead of R_{L}, and employ the compensation theorem to turn the source into a resistance. ROUT solved from the ensume equation is then our answer.
This method is described
called the image output immittance theorem, and it gives the answer in shorter time than the application of the applied source method would. The procedure we follow to apply this new theorem to our
network in Fig. 1 is first to replace R_{L} by - Rout, then to use the compensation theorem to turn the source $a V_{1}$ into a resis tance, and finally to make use of the relation $V_{2} / I_{2}=-R_{\text {OUT }}$, so as to secure the
$-a b\left(-R_{\text {OUT }}\right)+r_{o}-R_{\text {OUT }}=0$
Solving here for $R_{\text {OUT }}$ we obtain (4) for the case of regeneration. If we instead enter V_{1} $=-b V_{2}$, the result is (4) for degener
tion; the case the formula represents.

Second example

Some of our basic thinking in the above discussion will now be applied to the amstorage elements both inside the amplifier and in the load. The source μE is related to the driving voltage E while the dependent source $\mu K V$ signifies positive feedback compesponding symbols in the text should be taken as complex quantities. The transfer function and the output impedance ar known and are, with $s=j \omega$ an $\left(s L+R+R \omega+1 / s C^{\prime}\right)=Z$,

$$
\begin{aligned}
& A_{s}=\frac{V}{E}=\frac{\mu Z_{L}}{(1-\mu K) Z_{L}+Z} \\
& Z_{O U T}=\frac{Z}{1-\mu K}
\end{aligned}
$$

Here $\cdot R^{\prime}$ is contributed by the $C g$-combination as a series resistance, and C^{\prime} is th ensuing series capacitance. From now on we shall consider the network as forming single mesh. As in the previous example, aid of the output immittance theorem. I accordance with Tellegen's theorem, the sum of all power around the mesh is zero If the reader works this out as an exercise obtains. We shall here limit ourselves to the use of the immittance theorem, writing

$$
-\frac{\mu E}{I}-\frac{\mu K V}{I}+Z+Z_{L}=0
$$

With $V / I=Z_{L}$ and E / V obtained from), Whis if (10) had been the result some solution, the writing of (12) would have been the way we invoke Tellegen's theorem for checking purpose in this parti-

Fig. 2. Linear network to be turned into a
single mesh. The calculation results are single mesh. The calculation results are
checked with Tellegen's theorem and the mittance theore
cular case. On the other hand, if instead the immittance theorem was used to secure an initial solution, then we simply leave (12), obtain the answer in (10)

Guided by the above applications, we
can now formulate the immittance theo rem as follows:

For a linear single-node-pair or singlemesh energized network, Kirchhoff sum law, divided by the common variable, yields
$\Sigma[Y(s)$ or $Z(s)]=0$
For K the feedback variable, we set the enominator of (10) equal to zero to find he stability conditions, or, we set (1

$$
K_{c}=\frac{Z+Z_{L}^{\prime}}{\mu Z_{L}}
$$

where K_{c} is the critical value of K. If in
where K_{c} is the critical value of K. If in
stead (10) and (11) had been unknown, bu the network given, a summation of all im pedance around the mesh, with the sum qual to zero, would have given the sam answer for K
Using the image output immittance we first replace Z_{L} by $-Z_{O U T}$ and then sum up as follows, using the compensatio theorem and reading off V / I as $-R_{\text {out }}$,

$$
\mu K Z_{O U T}+Z-Z_{\text {OUT }}=0
$$

(14) from which the answer in (11) obtains directly. Precisely the same procedur with proper attention to signs, would give the correct answer for negative feedback The image output immittance theorem herefore general, and is often the quickes way available when we wish to determin not known by given formulas. The theo rem may be formulated as follows:
For a linear active network with an output port at which the network mesh, the output immittance is the locking-in immittance when the driving source is removed and the load immittance replaced by the image of the looking-in immittance with a negative sign.
hat readers concerned with of already obtained solutions might also
rider the superio gives solutions of a different kind For this theorem to apply to networks with de pendent sources, these sources must be entered with the values they have in th undisturbed network.
The above discussion confronts us with
Tellegen's Tellegen's theorem from only a few ave from among those which may be of com mon interest to people working with net works. Nevertheless, we have touche upon only a few possible exploitations
That the power of this theorem goes fa That the power of this theorem goes far
beyond networks is perhaps evident if we realize that Kirchhoff's laws are merel approximations under specified condition of two of Maxwell's equations. These tw may be referred to as the curl- H and curl E equations. Specifically, if we use the curl and writing a power equation that covers the total volume of the radiating system the mathematical relation is in effect th same as that resulting from an application in with Maxwell's equations, we should not be surprised to find that if we have charge flying by a conductor, inducing current in it, the ensuing network analogue can be proven by means of Tellegen
theorem. If instead the charge stands stil and the conductor flies by at arbitrary ve locity, we become concerned with the mes sage of Einstein's relativity theory. In the
macroscopic world, then, Tellegen's theomacroscopic world, then, Tellegen's theo-
rem still holds, as properly modified by relativity theory. Dr Tellegen has given us an extremely powerful mathematical too that deserves vastly increased use ove what it enjoys presently

References

1. Tellegen B. D. H., "A general network theo 1. Tellegen B. D. H., "A general network theo-
rem with applications", hliilis Research Re
port No. 7, R 195, pp. $259-$-269, August 1952. port No. 7, R1 195, p. p. 259 -269, August 1952 .
2. Penfield P. Jr., Spence R., Duinker S 2. Penfield P. Jr., Spence R., Duinker S ., Research Monograph No. 58, The M.I.T.
Press, Cambridge, Mass. and London, Eng Press, Cambridge, Mass. and London, Eng
land, 1970. 3. Stockman H. E., "The theorem Book, Serco 3. Stockman H. E., Pat hor:
lab 1977. By the sane author
3. "Output impedance theorem", Wireless Engi 4. "Output impedance theorem", Wireless Eng
neer, Vol. 31, No. 3, March 1954. neer, Vol. 31, No. 3, March 1954.
4. "Scientific models for experimenters", Serco lab, "1976.
5. "Thevenin and Norton", Wireless World Vol. 70, No. 6, June 196 solutions", Hayden, 1967 . 8. "The venin, Norton, and dependen sources", Wireless World, Voi. 82, No. 1490
October 1976 9. "Time-saving network calculations", Serco-
lab, 1954 . lab, "1954.
6. "Stability and Tellegen's theorem", IEEE 10. "Stability and Tellegen's theorem", IEEE
Circuits and Systems Magazine, Vol. 1, No. 3, Circuits
7.

 \square
, E

Bourgeois ballistics

There has never been a better time for the d.i.y. enthusiast. Employing tradesmen to
come and poke about in your house or on your car gets more ruinous by the day, and the results are very often little better than be achieved by a troop of monkey with a talent for social advancement. Run-of-the-mill joinery, bricklaying, plumbing
and painting need hold no terrors for the averagely dexeed hold no terrors for the with a full set of ten thumbs usually win through in the end. You can often obtain a lot of quiet pleasure, too, from a well-decorated sitting-room or a nicely finished set of bookshelves.
There has alw
There has always been a feeling of cosiThe same old subjects appear every year: The same old subjects appear every year:
loft insulation in November, swimming pools in May. It's astonishing the things some people will attempt, but I doubt that
many folk would consider a proiet I've many folk would consider a project I've
just seen on a press handout, here on my just seen on a press handout, here on my
desk - a do-it-yourself bullet-proofing kit for vehicles. No experience necessary, it says here. There's one thing, though; it could give rise to some stimulating over-the-garden-fence conversation.
" "Morning, George. Trouble?"
'Morning, Harry. No, I'm just bulletproofing the car. The wife keeps getting shot up on the way back from Sainsbury's, so I thought I'd beef the old bus up a bit.
It's costing me a fortune filling all these It's costing me a fortune, filling all these
bullet holes in every weekend." "Yes, see what you mean. all right for your three-oh-three high-velocity stuff, but you'll be in trouble with those blasted bazooka rockets."
"Well, I haven't got time for more than said I'd put the new lino tiles down in the hall today, and you know what she's like if I don't do things straight away. She's out this morning, down at the hand-grenade

Butter side down

Butter side down
Having just taken our library out of the Having plastic boxes it came from Dorset
orang House in, I've had a unique opportunity to observe Murphy's Law in inexorable action. The library's former home was more a hole in the wall than a room, and every-
thing was stacked up in unusable heaps of erudition. We've got stuff here going back to 1911 and the collection is growing all the time, what with the scores of magazines and books for review that come in. The library also used to be the place where all
the office embarrassments were hurled, on the basis that so long as no-one found them until 2001 they wouldn't matter any more. Packing it all up for the move, we de-
stack of papers and books that we didn't
want and couldn't find space for. Some of it hadn't been seen, let alone used, since he BBC was a Company, not a Cor poration. So, with a heavy heart and with
moaning and wailing, we slung it. After all, you have to be sensible about this sort of thing - it's not a bit of good hoarding waste paper. We kept the useful stuff and the more important historical material and hought we'd done well.
ne by now. Yes, of course, the very fir thing I wanted from our new, streamlined efficient library was in one of the old maga ines I'd insisted, against good advice, on to nip across the road to the Patent Office library or the IEE.
I just hope they never have to move, or

Cycling hertz

Since the day some unprincipled lout at RAF Stafford stole my bike, I have no
pedalled. (I was going to say I haven't set foot on one, but that didn't seem quite right.) With the move to Sutton, though, hought I'd have a go with a view to giving myself a bit of exercise by riding to the my daughter's Moulton up a bit and began to work up to three miles in easy stages, starting with a short hop to the paper shop. I'd been looking forward to riding the ave me of being in the wrong century a bitter disappointment. The last time ode a bike, the roads were uncrowded and was thirty years younger. This time, iscovered what it is to be an unconsidered good way of putting it, because I was quaking like a jelly when I got home again Apart from the way the bike doubled its weight every hundred yards, the main orry was the sheer malevolence of the car drivers. I tell you, if I never ride a bike certainly no chance of thinking of anything but staying upright and in one piece, which is what makes me wonder about the atest marvel of modern science - a bik Wputer
ell, if you are of a statistical turn of mind, you can discover your speed, aver age speed, maximum speed achieved dur ing a journey, distance travelled and jour-
ney time. And if that isn't enough to divert you, you can have a radio as well.
I can only suppose that your experienced cyclist is a lot more nonchalant I'm pretty sure that knowing my averas
speed would not be nearly enough inducement to get me to tear my eyes away from the monstrous regiment of car-borne were wolves intent on frightening the living day-
lights out of me. Personaly, lights out of me. Personally, I think I'd armour.

No sale

Now we are heading so surely towards the cashless, chequeless society you would think commercial transactions would have become simplicity itself. It only seems to
be a mere mechanical process of transferring a few digits out of one computer into another in a matter of microseconds. Not so, unfortunately. The old Adam (which includes his rib, I hasten to add) distrust of the other fellow and his compu-
the other day, for example, we had a despairing phone call from an engineer in a large public utility who was unsuccessfully
trying to buy a kit of electronic parts from trying to buy a kit of electronic parts from
one of our mail-order advertisers. Could we help? Apparently the public utility wanted to place an order through its normal system, by which payment would be made after the delivery of the goods. The mail-order firm, however, was not playing. sale. It seems at least three wily accountants in the public utility had had a go at them at different times, no doubt trying to catch them off guard with a variety of siren voices; but no, they were adamant. Mind
you, I can understand their reluctance. A friend who runs a small business tells me you can easily face ruin with a few of these large organizations as customers can take up to a year to pay their bills.
Anyway, the only help we could Anyway, the only help we could offer
the engineer was: why not pay the required sum himself, out of his own pocket, and then recover it later from his employer, who surely must be honest enough to cough up? There was a sharp intake of breath at the other end of the telephone,
followed by a long silence: "Oh, er . . I don't think our organization could cope with anything like that
It's extraordinary that there can be such a stalemate between two parties who genuinely want to do business together.
One is keen to buy, the other is willing to sell, but because each is a slave to his own method of transaction the result is no business at all. If human organizations have become so refractory it's surely time we
got in some of those intelligent machines that our contributor Malcolm Peltu wrote about last month. Machina sapiens might be able to teach homo sapiens a thing or two

ww-033 FOR FURTHER DETAILS

SPECIAL OFFER

exclusive to Wireless World readers
Since it's recent introduction the Keithley 130 has established itself as one And through Wheld D.M.M.'s available. V.A.T. retail price.
Features include:
\star Full 10 amp range \star Only one calibration adjustment required per annum $\star 25$ ranges and five functions; ohms DC and AC volts and amps

One year guarantee on specification
To take advantage of this unique offer, simply fill in the coupon, and send it to Note- Offercloses n che por this offer alowing 21 days for delivery. To: Wireless World Offer, Keitrliey Instruments Ltd, 1 Boulton Road, Reading, Berks. Pheque/postal order made payable to Keithley Instruments Ltd.

Name
Address

- 023 FOR FURTHEP DETAL

Carston Electronics

Bigger stock investment greater equipment range means wider choice

ne	DYMAR
1650	AM/FM Bati/Mins
2350	GENERAL RADIO
	${ }_{\text {GOULD }}{ }_{\text {SG705 }}$
${ }_{995}^{27}$	HEWLETT PACKARD 20405 Hz -1.2 MHz. 60009.800 dB at.
1215	$620 \mathrm{~B} 7-11 \mathrm{GHz} 50 \Omega \mathrm{FM} / \mathrm{PM} 1 \mathrm{mw}$ $8614 \mathrm{~A} 800 \mathrm{MHz}-2.4 \mathrm{GHz}+10 \mathrm{dBm}$ to $-127 \mathrm{dBm} 50 \Omega \mathrm{AM} / \mathrm{FM}$
450	MARCONI TFF144 H/4 4 HF Generator 10 KHz 272 MHz AM
1675	TF791. FM Deviation Meter 4.1024 MHz
1400	
450	
	TF20202/AS $10 \mathrm{kHz-72} \mathrm{MHz} \mathrm{FM/AM}$
895	$0.1-1 \mathrm{~V}$ o/p TF2012 UHF, FM $400-520 \mathrm{MHz}$, $0.03 \mu \mathrm{~V}$. Counter o/p
350	TF 2012 UHF, $400-520 \mathrm{MHz}$ FM
	RACAL 9081 5-520 MHz LED Display O/P 130dBm AM/FM
425	SCHAFFNER
	NSG330 Ignition Interfere
	NSG2008 Main Inerference
1725	STC
	(iatile Noise Gener

$\substack{\text { Prices } \\ \text { from } \\ 525}$
520

$\underset{\substack{\text { Priees } \\ \text { trom } E}}{ }$

Measuring trom Equipment couples not incl.)

Voitm
A Mk
B
N
Mkivac/oc vacioc

Of FS
NOE Militolmeter

The RMS

RADIO SHACK LTD for DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz frequency counter plus option of o-1.
transceiving application $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Communi
Trio testgear.
We rese situradd just around the corner foom West Hampstead Underground Station

DRAKE \times SALES \times SERYICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY Cablow: WW-029 FOR FURTHER DETAILS

Get a great deal fram Marshall's
 The new Marshall's $80 / 81$ catalogue is now

 available. A veritable treasure house of components, test gear, tools, etc.Lots of old friends, but also many new products including Leader test gear, Crimson products including Leader test gear, Crimson
Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More components including SN74ALS series, new tools etc.
We are franchised distributors
for Arrow Hart for Arrow Hart switches; Mullard; National; Siemens; Thomson; CSF etc.
Send for our latest catalogue.
 Free to industrial customers: 75 p post paid to private individuals.
A. Marshall (London) Ltd., Kingsgate House, Kingsgate House
Kingsgate Place, London NW6. 4TA. Industrial Sales: 01-328 1009 Mail Order: 01-624 858224 hr service Retail branches: London: Glasgow: Bristol

WIRELESS WORLD FEBRUARY 198

IEEE A-D for PET
PCI 1000

$\star 2$ versions: $- \pm 10 \mathrm{~V}$ Single ended $\stackrel{\text { or }}{ }$
Set to Order as low as $\pm 10 \mathrm{mV}$ Differential
$\star 2$ Pet type Bus Edge Connectors

* Individual "Talk" LEDs for Each Channel

Write or Phone
for a Data Sheet

RELAY UNIT FOR PET

PCI 2000

CIL

\qquad
 ell Wornhin (O9033 204646
felex: 87515 WISCO 6 ATT CIIL

89

WW - 054 FOR FURTHER DETAILS

Cut costs and speed trouble shooting

with the
Huntron Tracker

WIRELESS WORLD FEBRUARY 198

ELECTRONIC VALVES WANTED
All Types Receiving, Transmitting, Industrial PL504 - PL802 - PCL805 - CV131 - CV136 -
CV138 - CV329 807-813-2K25, Etc

Phone/write to
PYPE HAYES RADIO LTD. 606 Kingsbury Road Birmingham B24 9PJ rmingham B24
$021-3734942$ -026 FOR FURTHER DETA

WIRELESS WORLD FEBRUARY 1981

DE LUXE EASY TO BUILD LINSLEY HOOT

T20 + 20 20W STEREO AMPLIFIER $£ 33.10$ + VAT Thiskit, based ypon a desisin outilised in Practicial Wireless, uses asingle printed diricuit

POWERTRAN

Value Added Tax not included in prices

201100 WATT (rms into 8Ω) MIXER /AMPLIFIER

COMPLETE KIT

CHROMATHEQUE 50005 channel lighting effects system
 mimanuen mernamem
Kit includes fully finished mealiwork, fibreglass PCB controls, wire, etc. - Completer right down to the last rut and bot!!

WW-024 FOR FURTHER DETAILS

TRANSCENDENT 2000 smgcle boabd swwhesizer

 and

COMPLETE KIT ONLY
£168.50 + VAT!

NEW! TRANSCENDENT POLYSYNTH

Cabinot size 31.1" $\times 19.6^{\prime \prime} \times 7.6^{\prime \prime}$ (rear) 3.4" (front)

EXPANDABLE POLYPHONIC SYNTHESIZER
AS FEATURED IN ELECTRONICS TODAY

COMPLETE KIT ONLY £320 Extr voicen, 652 + VAI or E48 + VATH O ordord with kin EXPANDER, COMPLETE KIT $£ 295$

TRANSCENDENT DPX

MULTI-VOICE SYNTHESIZER

Another superb design by

ynthesizer expert Ti
published in
Electronics Today International
COMPLETE KIT
ONLY
£299 + VAT!

 Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\text {ii }}$ (raar) $3.3^{1 r}$ (front)

POWEFTRAN
ANY MORE KITS AND ORDERING INFORMATION ON PAGE 91
All priects on this page can be purchased as separate packs, e.9. PCBEs. components sets, hardware sets, etc, See our tree

WIRELESS WORLD FEBRUARY 1981

COMMUNICATIONS RECEIVERS made by Murphy Radio for Navy; high grade Rx covering 60 to 560 Kc in two bands and 1.5 . to $30 \mathrm{Mc} / \mathrm{s}$ in 3 bands, uses $13 . \mathrm{B7g}$ type valves as 2 RF stages, $3 \times$ IF stages at
800 Kc . Det.N.Lim. AVC $2 \times \mathrm{AF}$ stages. BFO and 800 Kc crystal Cal. the $0 / P$ stage matches to 100 ohm phones or 2 watts into 600 ohm . Controls, Main, Tune Band Sel. RF gain, LF gain. Phone gain, AVC On off, Selectivity at $8,3,1 \mathrm{Kc}$, or $200 \mathrm{c} / \mathrm{s}$ the 1 Kc sel uses Audio Filter, the BFO can be swt to upper or lower beat i.e. 801 or 799 Kc int set, also 800 Kc for tune. There are two $0 / P$ jacks for phọnes and one for spk. on front panel, provision for 75 ohm Ae $1 / \mathrm{P}$ or long wire. Complete in steel case, size 13 x 14 deep. Note hese $R x$ require external power supply giving 250 v
100 Ma and 150 v Stab DC 6.3 vAC at 4 amps. There is room inside the case to build an internal P.U. Supplied tested with circ. and 40 page handbook. £115. VIDEO RECORDERS. Philips type LDL1000 portable monochrome 625 line reel to reel type $1 / 2^{\prime \prime}$ tape
$75 \mathrm{ohm} 1 / \mathrm{P}$ and $0 / \mathrm{P} 1 \mathrm{v}$ sig... 4 v Vid ext. size 42×34 $\times 20 \mathrm{Cm}$ weight $12 \mathrm{Kg} 240 \mathrm{v} 50 \mathrm{c} \mathrm{I} / \mathrm{P}$ supplied in good condition with 80 -page handbook, untested with $2 x$ tapes, fuller spec. on request $£ 185$.
TEST SET CT373 Audio bench set 0 sc 17 c to 170 Kc . AF VTVM Dist. meas. set, new cond, with book, full spec. on request, $£ 80$.
/ postage \& VAT. Goods ex-equipm
list $25 / 1$.
A.H. SUPPLIES 122 HANDSWORTH ROAD, SHEFFIELD S9 4AE

TELEPHONE: 444278 (0742)
ww-035 FOR FURTHER DETALLS

from $£ 2.80$ per 100
Wirewound Power Resistors (Ceramic). 5 w -17w OR5-39K Cable Sleeves and Marker from $£ 1.311000$.
Cf. Resistors. $1 / \mathrm{wW}-2 \mathrm{w}$ from
Crimp Termings ${ }^{£ 4.001000 .}$
Crimp Terminals. Elma Knobs
and Dials, Audible Warning and Dials, Audible Warnin
Devices from $£ 1.14$ each. Catalogue available (state interests) WW-028 FOR FURTHER DETALLS

Cf. Resistors
Ct. Resis 5 £3.00 1000 (per value) + carr. and V.A.T. Following values only.
6E8 33E 100 E 120 E 360 E
$470 \mathrm{E} 560 \mathrm{E} 2 \mathrm{K4} 2 \mathrm{K7} 7 \mathrm{KK}$
 150 K 220 K 300 K 390 K 820 K PBRA LTD. Golden Green, Tonbridg
Kent TT11
THH
Nop Hoptield (073274) 345
Member Crystalate Group

SWANLEY ELECTRONICS

CAMBRIDGE LEARNING

Self
Instruction
Courses
Microcomputers are coming - ride the wave! Learn to program. millions will be created. Learn puter and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency, with a unique style of graded hints. In 60 straightforward programming: problem definition flowcharting, coding the program,
 Book 1 computers and what the do will

Also THE BASIC HANDBOO (BHB) E11.50 An encyclopaedic
Hide to the maior BASIC dialects. A must if you use programs and: ALGORITHM WRITER'S GUIDE (AWG) E4.00 Communicate
by flow chart! Learn to use Yes/No questions for: procedures, system design, safetty, Iegislatition etc. Electronics
Written for the student or enthusiast, this course is packed with information, diagrams, and questions designed to lead \qquad you step-by-step through number ystems and Boolean algebra to memories, counters, and simple
arithmetic circuits; and finally to an arithmeitic circuits, and inderstanding of the design and opera-

DIGITAL COMPUTER LOGIC \& ELECTRONICS. (DCL) $£ 7.50$ ing the material in italics above, but at a slower pace $(4$ vols)
GUARAN

add $1 / 2$
Name.:
Address

New Profile Amplifiers- Two New Series

NO QUIBBLE 5 YEAR GUARANTEE 7. DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE

JNEW POWER SUPPLY UNIIS

Of the eleven power supply units which comprise our current range, nine have toroidal
transformers made in ourownactory. Thus these 1.1. P Powersupply units are space-saving transiormers thade in our ownactory. Thus these l.L.Ppower supply unitsare space-saving, more amps and pre-amps with types to match whatever IL.

PSU30 $\pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY6 or $6 \times$ HY66 $\quad £ 4.50+0.68 \mathrm{p}$ VAT - THE FSU PSU36 for use with 1 or 2 HY30's
\bullet ALL THE FOLLOWING USE TOROIDAL TRANSFORMERS PSU50 for use with 1 or 2 HY60's PSU60 for use with 1 HY120 PSU65 for use with 1 MOS120 PSUU7 for use with 1 or 2 HY120's PSU75 for use with 1 or 2 MOS120 PSU90 for use with 1 HY200 PSU95 for use with 1 MOS200 PSU180 for use with 1 HY400 or 2 HY200
$£ 8.10+£ 1.22$ VAT
$£ 10.94+£ 1.64$ VAT
$£ 10.94+£ 1.64$ VAT
$£ 13.04+£ 1.96$ VAT $£ 13.04+£ 1.96$ VAT
$£ 13.32+£ 2.00 \mathrm{VAT}$ 2 MOS200
$£ 15.92+£ 2.39$ VAT
$£ 16.20+£ 2.43$ VAT

$£ 16.20+£ 2.43$ VAT
$£ 16.32+£ 2.45$ VAT
$£ 16.32+£ 2.45$ VAT
$£ 21.34+£ 3.20$ VAT

* Freepost facility
 \star TO ORDER Send cheque or money order payable to I.L.PElectronics

ELECTRONICS LTD.
FREEPOST 5 Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP Telephone (0227) 54778 (Technical (0227) 64723) Telex 965780 Available also from MARSHALLS, WATFORD ELECTRONICS and certain other selected retailers

B BRITANS FOREMOST OUALITY MODULE SUPPLIERS
\qquad
To: IL.P ELECTRONICS LTD. CANTERBURY CT2 7EP
\square Postal Orders \square International Money Order \square
Please debitmy Access/Barclaycard Account No.

1971-1980

TEN YEARS OF PLANNED

 PROGRESSWhen, in 1971, lan L. Potts founded his now world-famous company, exploiting to the full, the potential that more rational approach to New thinking was badly needed. The result was a range of moducules revolutionary in concept. The rightness of this snew thinking is shown
by the size of the company today, its new factory, its vast exports, its acceptance by constructors as the modules os build with. The range with existinger and better. Exciting new lines (in no way connicting
L.L.P are sing well past drawing board stage. This is why I.L.P are simply ahead and staying there.

DISTORTION TYPICELLY - LATEST DESIGN HIGH
0.005\% 0.005% QUAHITY CONNECTORS - S/N RATIO-90dB (Mag. - ONLY POTS, SWITCHES END P.U. -68 dB PLUGS/SOCKETS NEED ADDINC

Now you can shop in lurope for Microware Chip Capacitors.

A Elurpopan source for Microwave and Ceramic Chip Canacitors
is now available from Pascall who offer the full range from Eurofarad, one of Europe's leading capacitor manufacturers. Eurofarad's specifications meet all industrial, military and aerospace applications.

Pascail Electronics Limited Hawke House, Green Street,
Sunbury-on-Thames, Middlesex TW16 6RA
Telephone: 093227 87418 Telex: 8814536
 wW - 064 FOR FURTHER DETAILS

TV TUBE REBUILDING

Satellite communications and you...
 in
 Practical Comphting
 The February ssue. available from leading newsagents, examines the feasibility of exchanging datat between home computers. using satelilites. In priniciple a small roottop dish aerial would dala beween home computers. using satelitites. In priniciple a small roottop dish aerial woul allow a home computer in the UK to communicate with other users in the USA and Europe. Just think what that could do to your telephone bills.
 Also in this issue: Reverews o I Mupet. an

 Mene appications area we see how a trmm ol technology connly to the aid ot an old cratt All this. plus our reviar adive columns tor users of P P 60 . Froon your newsagents or post this coupon now.
 Out January 21

Memories	8085 Series	
		1-24 25-99
$2732 \quad 11.80 \quad 9.50$	8085 A	6.804 .10
2114L (200ns) 2.992 .75	8155	9.457 .47
4116 (200ns) 2.622 .50	8155-2	11.818 .21
2147 (70 ns) $\quad 5.904 .99$	8251A	5.604 .70
2112 (450ns) 3.002 .80	8253-5	5.994 .90
All components	$8255 \mathrm{~A}-5$	4.994 .67
guaranteed new full	8257-5	10.408 .40
specification.	8279-5	8.306 .33

BDS Microsystem Designs Ltd. 28 Pinewood Close, St Albans, Herts AL4 0DS elephone St Albans (0727) 3183
ww-009 FOR FURTHER DETAILS
NEW! Thurlby 1503 high resolution multimeter $£ 139$
Greater resolution, greater accuracy, and greater versatility
43/4 digits ($\pm 32,768$ counts) $10 \mathrm{uV}, 10 \mathrm{mf}, 1 \mathrm{nA}$ resolution 0.05\% basic DCV accuracy LCD, fully field portable

7 functions including Frequency Outstanding price/performance ratio
Thurlby 1503 designed and built in Britain

From Newtronics

THE NEW EXPLORER / 85 SYSTEM EXPLORER/85

PROFESSIONAL COMPUTER KIT

An inexpensive

 8085, S100 BasedComputer System designed
or maximum flexibility
Now available with $8^{\prime \prime}$ Floppies

 and

8" FLOPPY DISC SYSTEM

64 K 'JAWS' 5100 DYNAMIC

为 KITS

Epron mн80

- the worlds first printer
with disposable print head

	KITS	\&TESED			WIRED
$16 K$	$£ 149$	$£ 169$	$48 K$	KITS	\& TESTED
$32 K$	$£ 194$	$£ 214$	$64 K$	$£ 289$	$£ 259$

*9×9 dot matrix * Logic Sieoking * Bi-directional
*96 ASCIICharacters.
Internationaphics and 8
 optional RS232 and IEEE 488 *Four print
densitios 40.80 .66 or 132 columns *Multiple
type founts $*$ Solt
 Buzzer for end of paper and bell corie error
ONLY $£ 35$

W-023 FOR FURTHER DETALIS

TUNE IN

 to the new-look คiofifel This month... 03 P:OJFOHS 8FTHATURBS...

MorseTutor:

Struggling to pass the Morse test? Build our Mose Tutor and master the c.w. This project in Morse Tutor anse at you for practice singly, or in random Mors. random Morse a
groups of five charac

Accented

 Mietronome:This device uses a distinct lowering of pitch to This device the pre-selected second, third
accentuate
fourth beat. Using few fourth beat. Using few components this is an
ideal beginners project. $\{$ NENT SEPIOS\} UNDERSTANDING NDERSTAND
RECEIVER
Get on the right frequency every month... PARAMETEN order your copy NOW!!

| TRANSFORMERS |
| :---: | :---: |
| COATINUOUS RATINGS | \(\begin{aligned} \& Please add 15\%

\& VAT after 8 \&PP\end{aligned}\) MAINS ISOLATORS (Screeneac) 12 or 24-VOLT

Barrie Electronics Ltd.
3,THE MINORIES, LONDON EC 3 N 1 BJ

106

UK. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE
 PANEL METERS $£ 4$ each
$50 \mu a 100 \mu а \mathbf{~} 500 \mu$, 5月,
1 ma,
5ана,
5000 ma,
25 volt, 50 volt, VU Meter.
Facia size $23 / 13 \times 13 / 4 \times 1 / 2$ in.

$$
\text { "MINOR" } 10 \text { watt AMPLIFIER KİT } £ 14.0
$$

OTEMTH ETES Carbotr

EMI $131 / 2 \times 8$ in. LOUDSPEAKERS

$£_{\text {Poss } 99_{n}}^{105}$

RADIO COMPONENT SPECIALISTS

INTRUDER 1 Mk. 2 RADAR ALARM
 With Home Office Type approval

 Complete kit $\mathbf{£ 5 2 . 5 0}$ 'plus VAT, or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT

Wireless World Dolby noise reducer

Complete Kit PRICE: $£ 49.95$ + VAT (3 head model availible)
Also availabie ready buit and iested
 Hatmonic disiotition 0.1% ar Dolby level typically 0.05% over
most of thand, rising to maximum ot 0.12% and Signationorise ratio: 75 and
ait Monito output
$\begin{aligned} & \text { Dynamic range }>900 \mathrm{~B} \\ & \text { 30mv sensitivity }\end{aligned}$

All kits are carriage free
IITEGREK LIMITED
Pease send SAE for complete lists and soectications Portwood Industrial Estate, Church Gresley Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) $215432{ }^{\text {Telex }} 377106$

 *) Full range of complimentary components, i.e. P.S. U. 's,
heatsinks etc. available from Crimson

GEGCrimsonflektrik

Valves • Tubes' Germanium and Silicon semi-conductors • TVtube guns
ww - 057 For further details

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

 4528, Nicosia

 Oosselilifer Hndolesh
Amsterdam 1004
 Cama Road, Bombay 1

To become a subscriber please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH England

Enquiry Service for Professional WIRELESS WORLD Wireless World, February 1981 WW 162
Readers ONLY. Please arrange for me.to receive further details of the products listed,

Wireless World Subscription Order Form .Wireless World, February 1981 wW 162

UK subscription rates
 1 year: £10.00
 USA \& Canada subscription rates
 1 year: $\$ 33.80$

Please enter my subscription to Wireless World for 1 year
I enclose remittance value.. payable to

Name. IPC BUSINESS PRESS Ltd.

Address

\qquad

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone : 225008 Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Rappongi, Minato-Ku, Tokyo 106 Telephone : (03) 585-0581

United States of America Ray Barnes *IPC Business Press 205 East 42nd Street, New York, NY 10017 - Telephone Mr. Jack Farley Jnr., The Farley Co Suite 1548, 35 East Wacker Drive, Chicago, Illinois 60601 - Telephone (312) 63074

Mr. Victor A Jauch
Elmatex International,
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A.
Telephone: : (213) 8218581
Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605
Ranna Building, Cleveland, Oh
Telephone: (216) 621 1919
Mr. Ray Rickles, Ray Rickles \& Co

P.O. Box 2008, Miami Beach, Florida 33140 - Telephone : (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co 3116 Maple Drive N. E., Atlanta, Georgia 30305. Telephone: (404) 237. 7432 Mike Loughlin, IPC Business Press, | 15055 Memoriats, Ste 119, Houston, Tex |
| :--- |
| 77079 - Teloh |
| 1713) 7838673 |

Canada Mr. Colin H. MacCulloch, International Advertising Consultants Ltd. 915 Carlton Tower; 2 Carlton Street, Toronto 2 - Telephone (416) 3642269

A dual trace 10 MHz high sensitivity oscilloscope At a price of $£ 230.00+$ VAT.
incorporating all the latest high technology. Ensures British leadership in the low cost high developments to bring you all these
outstanding features as standard.

- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
- 2 mV sensitivity on both channels. Add and invert facility.
Probe compensation.
Push button $X-Y$
Trace locate.
$10 \mathrm{MHZ} \mathrm{(-3dB)}$ over full display
Complete with pröbes.
performance oscilloscope market.
Distributors required in certain countries

LOW COST - HIGH RESULTS

Major Price Breakthrough on 6 MIL Pink Poly

Why pay more for the same results?
Our Pink Poly ba'gs end the hazard of static spark discharge in handling and packaging of sensitive electronic components.

44 Standard sizes, 15 from Stock
Example:
$8 \times 8 \quad £ 111.07 / 1000$ $10 \times 12 \quad £ 173.47 / 1000$ 13×16 £217.78/1000

Other sizes and quantity prices available on request

CAVAC SYSTEMS LTD
Unit 15, Suttons Industrial Park London Road, Eariey, Reading, RG6 1AZ Tel: (0734) 669663 Telex: 849286

For the vast majority of capacitance, resistance and inductance measurement applications, the Avo Measuring Bridge B151 is ideal. It can be used for production checking, fault finding, development engineering and much more. True it may not be as elaborate as other measuring bridges, but it's not as pricey eith The B151 offers accuracy at $\pm 0.3 \% \pm 1$
digit a high level of sensitivity, a full range
of resistance measurement at $d c$ and of R, L and C at 1 kHzac . There are also facilities for an external test frequency source and a polarizing age for capacitors

Consider your requirements carefully. Match them against
our us today for your copy.

Archcifife Road, Dover, Kent CT17 9EN

Telephone:0304 202620. Telex: 96283
You'll never meet a better meter (1) A Member of the THORNEMI Group

WIRELESS WORLD HEBRUARY 1981

EPROM Erasure at low prices.

Chiptech ultraviolet eraser onomy designed primarily low throughput.

Although low cost, they are also the fastest and most efficient erasers of their size.

All models are fitted with 600 hour UV tubes, safety interlocks and housed in gold anodised aluminium casings.
PE 146 chips $£ 56.00$ PE 14T 6 chips $£ 76.58$

For larger
systems users, model
E 24T has a double tub
construction and
automatic shut-off
with 60 minute with 60
timer.

Chiptech Limited

Chiptech Limited.

Tewin Court, Welwyn Garden City, Herts. AL7 1 AU
Tel (07073) 32140. Telex 8953451

	RADIO TELEPHONE EQUPMENT	
	(hnow	
C-7800 £275 inc VAT		
		Sole
		Mele
$\therefore \mathrm{O}$		
C-8800		WIRE Wouno Resiss
		and 240 aci inut berad now
		\%ense

TELEVISION SOUND IS GOOD!

Yes it's true - but you'll need to listen through a Minim
felevision Sound Tuner to be convinced. Music, widlifife, Television Sound Iuner to be convinced. Music, wharf al
even the news suddenly comes to life when you can hear all the detail that you uxpect from High Fidelity equipment. Connect the Minim Televivison Sound Tuner to the amplifier or music centre or isten directly on headphones so as diturb
disurb thers.
Further information will only cost you $12 p$ - stamp out poor televison sound!
Name
Address

GINTENEME			
${ }^{43}$		Chassis Female	
(1) 4.5 and 6 pin versions and large sele			
(1) NEUTRIK			
Latchless Chassis Female NC3-FZ $£ 0.67$PCB Mounting Chassis Female NC3-FD		Please specity horizontal or ererical mounting PCB	
BELCLERE AUDIO TRANSFORMERS EN6422 Ratio			
Trade enquiries welcome; quantity discounts available. All prices subject to VAT. Call,write or phone. Min. order $£ 10$. Please add $£ 1$ postage. Access, Amex, Barclaycard.			
\%	KELSEY ACOUSTICS LTD 28 POWIS TERRACE, LONDON W11 IJH		

Codesoesd Escotronics

WIRELESS WORLD FEBRUARY 198

 COUNTERS

HAND HELD
. 20 Hz to 200 mHz 8 Digit LED E 54. MAX50 100 Hz to 50 mHZ 6 Digit LED
MAX550 30 KHZ to 550 mHz 6 Digit LED
E100
E106.00 BENCH PORTABLES
 TF200 8 Digit LCD 10 Hz to 200 mHz ع158.95 7010A 9 Digit LED 10 HZ to $600 \mathrm{mHz}{ }_{\varepsilon 169.00}^{£ 158.0}$ TP600 600 mHZ Pre-Scale for $\mathrm{TF} 200 £ 41.00$
2000 SPC 6 Digit 100 MHZ LED built into 200SPC 6 Digit 100 MHz LED built into
0.002 HZ to 5.5 MHZ Pulso Generator

CLAMP METERS/
IISULATION TES

Stockists of electronic equipment, speakers/kits, PA equipment plus huge
AUDIOELECTRONICS Citasede
ww-051 For further detail.

Advertisements accepted up to 12 noon Monday, 2nd February, for March issue, subject to space being avail-

DISPLAYED APPOINTMENTS VACANT: $£ 12.00$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 2.00$ per line, minimum three lines.
BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the Box Number in the PHONE: Eddie Farrell, 01-661 3500, Ext. 8158.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T

ELECTRONIC OPPORTUNITIES

 £5,000-£15,000Microprocessors - Minicomputers - Digital Analogue - HF - VHF - UHF - Microwave
Where does your skill and interest lie?

Design? Test? Production? Sales? Service? Systems? or perhaps Software?

* Our clients are drawn from all sectors of industry:
* Most UK locations and some Overseas
* Make your first call count - Contact MIKE GERNAT on 076-384-676/7 (24 hours) ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LTD 148-150 High Street, Barkway, Royston, Herts. SG8 8EG

FIELD SERVICE ENGINEER

SOUTH-EAST

An antracive salar will be offered, together with considerable Soditional benentis

Applicants who reside within the area or are prepared to move should
felephone or write
Mise S, M. Houghton
Miss S. M. Houghton
INTRUMENTATON LABORATORY (UK) LIMITED Kelvin Close, Bircchwood
Warrington, Cheshire, WA3 7PB
Warrington, Chesh

INSTRUCTORS

bROADCAST VTRS AND CAMERAS
The Group Training Department in Reading, England, need Instructors to specialise in training courses in broadcast elevision colour cameras and videotape recorders. Key requirements are

- Experience as (or the personality to become) an expert instructor with the talent to impart technical information
to engineers of many nationalities and varying depth of to engineers
knowledge

Practical experience of broadcast television or similar equipment

Theoretical knowledge of advanced electronics
(A knowledge of languages is an advantage)
This is an opportunity to join a company in the forefront of technological innovation in a position offering overseas travel
and contact with engineers of many countries. Attractive and contact with engineers of many countries. Attractive
solary, pension, life assurance and permanent health schemes.

AMPEX AMPEX Acre Road, Reading, England
Tel: Reading (0734) 85200

Electronics R\&D

Join us in the forefront of technology

Take your pick

HF-VHF-UHF-

Microwave Optics \& Acoustics A challenging and full career in Government Service.
Minimum qualification - HNC Starting salary up to $£ 6,737$ (under review) Please apply for an application form to the Recruitment Officer (Dept. WW9) H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.

NATIONAL HEART AND CHEST HOSPITALS BROMPTON HOSPITAL

Medical Physics Technician Grade IV or III

(ELECTRONICS)
We require a technician to work in a small but busy department
which which provides a comprehensive med
to this leading cardio-thoracic hospital.
Within the department the technician will be engaged mainly in
electronics work but othe the electronics work but other scientific or engineering skills would be an
advantage. In addition the technician will be required to work in
clinical clinical areas
equipment.
Salary within the range of $£ 4931$ - $£ 7277$ inclusive depending on.
experience. For further information contact Chief Technician, Mr. P. experiencec. For fur
Butle, ext. 4252.
.

DIGITAL EXPERIENCE? FIELD, SUPPORT AND
PRODUCTION. VACAN. IES IN COMPUTERS, NC VÍDEO, ETC.
Fore free registration ring
$01-4647714$ ext. 502
24 HOURS
$4 \sqrt{5} \sqrt{2}$

central services department of the scottish WIRELESS TECHNICIANS ($£ 5,300-£ 7,060$)
Applications are invited for three posts of Wireless Technician in the
eentral Services Department of the Scottish Office. The posts are Central Services Department of the Scottish Osfice. The posts are
based in Inverness, Edinburgh and Montreathmont, Forfar. Can-
 Electrical Engineering or a City and Guilds of London Institute
Cerificate in an appropriate subject or a, ualification of a higher or
equivalent standard and have three years' appropriate experience. quivalent standard and have three years' appropriate experience.
clean current driving licence and ability to drive private and hicles are essential
pplication forms and further information are obtainable from Scottish Otrice Personnel Division, Room 110; 16 Waterloo Place, Edinturgh
EH1 3DN (quote ref. PM(PTS) 2/13/80 (031-556 8400 Ext. 4317

Closing date for receipt of completed application forms is 11 February,
981

APPonments
APPOINTM ELECTRONICS to $£ 15,000$
MICROPROCESSORS COMPUTERS - MEDICAL data comms - radio Design, test, field and
supooort engineers- -for immediate action on
salary and careeradvance
ment please contact:
Technomark

PRESTOM POLYTECHNIG
SENIOR LABORATORY TECHNICIAN required with an H.N.D. qualification
in electronoics or relatated disciopline, and
 wholl be useful.
Salary Scele. $T 3 / 4$ £4581-£5784

 Ofticer, Preston Polytechnic, Corpo
Oriton Streat Preston.
Reference No. NT
Refernere No No NTTOM/81/49,
Closing dat: 14 days atter appea-
rance of advert.

Ideally, candidates should have in-depth xigitene circe ovits video a ape ape recicalders, knowledge of the broadcast industry,
especially measurement techniques. In acpitition it is essential that he or she can
present ideas clearly and answer the mos present ideas clearly and answer the most
difficult and unexpected questions. Knowledge, or an ability to master the
techioques of video cameras dioita audio techniquese of vidoo cameras. digitia audio
equipment and the application of microprocessors to broadcast equipmen
will be an advantage, although we are will be an advantage, although we are
prepared to provide the necessary adationanal ltraining. Promising yout
R\&DEngineers
Sony is now established as the world lechnology. Development tis still in the formative stages but rapidly progressing
to the new era of the 'All Digital Studio'. The R \& D Section is involved in long term
investigations into the application of high investigations into the application of
speed digital techniques to video. speecessing, and in conventional product
prosign. Being part of an international \& \&
der design. Being part of an intineratitional R \& expect occasional opportunities for overseas travel. Applications are invited
from engineers offering experience in rom engineers oftering experience in
high speed digital processing or vide engineering. Alternatively, a well qualified
recent graduate could be considered.

Project Engineers

Project Engineers
For $\begin{aligned} & \text { our young and enthusiastic Special } \\ & \text { Proiects Team. They will be involved in }\end{aligned}$. Projects Team. They yill be involved
the design, manutacture and
and commissioning of static and mobile
television systems and in moditiations and accessories. The successtul
applicant will have a thorough knowledg of sound and televevision principles. Ideally
he or she should also have experience in eor she should also have experie
perational television or its allied - manutactuturing industry.

QA Technician
Candidates should be experienced in the repair of modern tele vision equipment
and also be familiar with digital circuitry. Activities willindlude the testing and commissioning of advanced broadcast
televisisonequipment. A relevant HNC
level oudication is desirable. eve qualification is desirable.
Service Engineers
Two coenings exist, one at a more senior
Twel for ualified engineers with level, for qualified engineers with
broadcast television engineering experience in operations and maintenance. The positions will enta
responsibilitiy for the repair and test 0 sopphisticated broadcatat televisio
equipment, together with minor equipment, together with minor
develeopment work. Some travel within
the UK and overseas is anticipated. the UK and overseas is anticipated. Candiaates tor he senior appoxerience
will
working had several years experien broadcast environment or for working in a broadcast environment
a television broadcast equipment a television broadcast equipment ore or
manufacturer, during which time he
she will have worked on VTR and came she will have worked on VTT and camera
equipment.The second position should
eqpeal to engineers with less experience appeal to engin
who are nows
environment.

Sony Broadcast Ltd.

City Wall House Basing View, Basingstoke Hampshire RG21 2LA United Kingdom

Senior Proposals Engineer Manager. The successiul applicant will have a technical background in television
engineering preferably in the broadcast industry. He will er required to
understand individual equipment as well as overall broadcast Systems and will
anjoy workin with the minimum of enioy working with the minimum of
supervision, often under resessure. The work will include the assessment
of customer's specifications and the preparation of the company's response to
botht te tecnical and commerial both the technical and commercial
conditions. A nowwedge of foreign
bol conditions. A knowledge of foreign
languages would be useful although not
essential. Assistant Product M
Product Engineers
Assidact Engineers managers and
We have vacancies for Assistant Produc We have vacancies for Assistant Product
Managers and Product Engineers in eac
 Editing Systems
and Cult
Unatic VT's.
Candidates for the Assistant Manager
posts will ideally be graduate engineers Dosts will ieall
with some years of experience in in video
technol technology, whereas applicants for the probably ye less experienced. However
at both levels we are willing to consider at both hevels we are wiling to consider
the right kind of experience in lieu of the right kund of experi
formal qualifications.
suitable in-house training to enable them suitable in-house fial gut Support botn
to provid tenhinal product
within Sony Broadcast and externally to customers
Lecturer
The successful candidate would conduct
theoretical and practical training courses on our major products, be able to write
circuit descriptions and produce training circuit descriptions and produce train
manuals with lucid block diagrams.

SONY.
Broadcast

Professional Careers in Electronics

All the others are measured by us．．． At Marconi Instruments we ensure that the very best of communications test instruments and A．T．E．We have a number of interesting opportunities in our Design， Production and Service Departments and we can offer
atractive salaries，productivity bonus，pension and sick attractive salaries，productivity bonus，pension and sick If you are interested to hear，more，please fill in the ollowing details：－

TEST AND COMMISSIONING EN

192001
companr

1 Matical Phyvicas and Clink

Medical Physics Technician III／IV

Clinived Measurcmenter
Ref：MPT CM
Telecommunications Manager

Sudan

KENANA SUGAR COMPANY LIMITED，in which the Sudan Government is a major shareholder，is developing Africa＇s largest sugar estate，including a sugar factory and refinery，on the White installed a VHF radio system（RCA）with over 300 mobile sets， 18 base stations and 10 channels．Other equipment includes UHF systems and HF with FSK for teleprinter communications．A contract for a microwaye and multiplex estate telephone system 1,000 line exchange and 8 PABXs）will－be let shortly．
A Telecommunications Manager is required to control the Communications Division employing 40 people．He will be responsible for maintaining and servicing the equipment and will work closely with the company＇s consultants throughout the installation period．
An electrical／electronic engineering qualification at least to HNC experience maintaining telecommunication／telephone equipment as specified are essential．
A highly competitive salary will be negotiated plus 15% end of
contract gratuity，discretionary bonus and education allowances where applicable）． 60 days＇annual leave，passages paid．Free air conditioned accommodation，services and medical attention． ports and club facilities．
Please send relevant details－in confidence－to R．M．Cooper ref ZH． 60661 ．Further information will be sent．

United Kingdom Australasia Benelux
Canada France Germany Ireland
Canada France Germany Ireland
Italy Scandinavia South Africa Italy Scandinavia
Switzerland U．S．A．
Vanagement Selection Limited
International Management Consultants
474 Royal Exchange Manchester M2 7EJ
（842）

LECTURER GRADE II／SENIOR LECTURER IN ELECTRICAL／ ELECTRONIC ENGINEERING
（6012－£10，539（Bar）－£11，295）
Candidates will be concerned with the teaching of
Electrical／Electronic Engineering in Mechanical and
Production Engineering diploma and degree courses
$\stackrel{\text { or }}{\text { olectronics }}$
$\stackrel{\text { or }}{\text { G }}$
c）General Electrical and Electronic Engineering Relevant industrial experience with an appreciation and／or
experience of computer engineering to some branch of electrical／electronic engineering，desirable
Furher details and form of application from The Assistant
Director（Administration），Trent Polytechnic，Burton Street
St Nottingham，NG1 4BU．Forms to be returned as soon as
possible． ssibl
『员居幾T
POLYTECHNIC

ELECTRONICS
Posts in Computers，Medical，
Comms，etc．ONC to Ph．D．Free
Service：
F Phone：01－906 0251

DATA COMMUNICATIONS ENGINEERS

c£8,000

 Our client enjoys a reputation for innovative design in thdistributor for an International world leader in modems. With many excellent products "in the pipeline" an exciting expansion programme has been planned for the 1980 's, starting with a ambitious electronics engineers to supplement the present management team and make an effective contribution towards the
ntinued success of this dynamic young Company.
PRE-PRODUCTION ENGINEER Aged 28-40 with an Electronics degree you will need to
demonstrate a high level of practical expertise in new product development.
This key position requires a person with the ability to put theoretical ideas into practical, economical production and involves a great deal of liaison with management at all level Design or user know-how of modems, line drivers or data
communications would be a distinct advantage although extensive in-house training will be given to the successful
candidate.

TECHNICAL SUPPORT ENGINEER This new position will ideally suit an experienced engineer
used to acting as a technical co-ordinator between the customer and the company. The successful candidate will act as a link-up to all depts and will carry out a troubleshooting ole with the end-user.
This diverse role calls for an engineer to co-ordinate the field service function, provide technical specifications and service
manuals for company products, in-house and end-user technic troubleshooting as well as a back up to the marketing function. Hence appreciation of user problems in the data
communicationssco Hence appreciation of user protlems in the data
comminuications-computer data link field would be a great asset. or thertunities that exist for personal career controlled growth in a bouyant market.

Applicants, Male or Female, should telephone Ken Hoare on 021-643 5231 or write to:
Gresham Executive Appointments, Sth Floor, New Street Chambers, $67 a$ New Street, Birmingham

Gresham

Executive Appointments

	CAPITAL HOUSE 29-30 WINDMILL STREET LONDON W1P 1 HG TEL: 01-6375551
	THE UK's No. 1 ELECTRONICS AGENCY
	Design, Dev. and Test to $£ 10,000$ Ask for Brian Cornwell
	SALES to $£ 12,000$ plus car Ask for Ken Sykes
	FIELD SERVICE to $£ 10,000$ plus car Ask for Maurice Wayne
	We have vacancies in ALL AREAS of the UK
	Telephone: 01-6375551 (3 lines)

COLOUR VIDEO AND ELECTRONICS ENGINEERS

Varied work in small experienced feam operating broadcast quality studios/
copying sevicice, plus research and development.
SENIOR VIDEO ENGINEER £7500-£8727 To run development/maintenance. sub-section, supporting video player
network, broadcast colour recorderss E.N.G. units, etc.

ELECTRONIC ENGINEER

 £5952-£7212 Digitial and analogue skills for new equipment development and some Further dotaits and application forme from the Porronnol orficer,Brighton Polvtechnic, Moulscoombe, Brighton BN2 4 AT . Tol. Brighton | Bighon Portiochnis Ext. 2536 . |
| :--- |

TO MANUFACTURERS, WHOLESALERS \& bULK BUYERS ONLY

 Metaamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types,
Axial, Radial, etc. Axial, Radial, etc.
Transformers, thokes, hopts, tuners, speakers, cables, screened wires,
connecting wires, screws, nuts, transistors, ICs, tiodes, etc
 All at Knock
4450749 21 Lodge Lane, M. Finchley \& MAYCO DISPOSALS

INVERTERS
 break" (2ms) static switch,
19" rack. Auto Charger.

Electronic EngineersWhat you want, where you wan!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim
Tunbridge Wells,
Kent. TN4 8AS.

Please send me a TJB Appointments Registration form:
Name .
Address
Tel: 089239388 TJB

ARTICLES FOR SALE

\qquad

BH166BR
(0202) 765051

CLASSIFIED ADVERTISEMIENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept., Quadrant Hoilse, The Quadrant, Sutton, Surrey SM2 5AS

- Rate $£ 2$ PER LINE. Average six words per

Rate $£ 2$ PER LINE. Averag
line. Minimum THREE lines.

- Name and address to be included in charge
- if used in advertisement. Box No. Allow two words plus $£ 1$.
- Box No. Allow two words plus \mathfrak{E}.
address .
- Cheques etc., payable to "Wireless World"

SAFGAN presents DT-400 series from $£ 159$ + V.A.T. HIGH-QUALITY DUAL TRACE OSCILLOSCOPES

 SPECIFICATION FOR ALL MODELS

* BANWITTH.10MHz (DT-410), 12MHz (DT-412)

15 MHz (DT-415)
TIME BASE: $0.5 \mathrm{sms} /$ div- 200 ms /div in 18 cal steps
$\times 5$ Expansion to
$100 \mathrm{~ns} /$ div Expansion to 100 ns/di
5 Multipie to $15 /$ div
$\begin{array}{r}\text { No MAL } \\ \times \mathbf{~ M o d a t i o n ~} \\ \hline\end{array}$

ww-030 FOR FURTHER DETALL

INDEX TO ADVERTISERS FEBRUARY

Appointments Vacant Advertisements appear on pages 118-127

 Wheele \& CO, CANADA: The Wm. Dawson Subscripion Service Litat, Gordon \& Gotch Ltd. SOUTHA

Afterthought...or after thought?

When you think about the adverse effects of your tape head becoming magnetized, as it inevitably will - loss of high frequency response and undue background noise-the solution becomes obvious. Demagnetization. The Bib Tape Head Demagnetizer is BSI approved, simple to use and suitable for both reel to reel and cassette machines. A probe is merely brought to within a few millimetres of the tape head and held there for about 3 seconds - so there is no risk of damaging the head itself. And, if

used regularly, you can be sure of getting the best possible reproduction from your tape machine.

Don't wait until you can actually hear theproblem. Thinkaboutpreventing it now with a Bib Tape Head Demagnetizer - part of the Bib Audiophile range of quality audio maintenance products. Displayed in leading department stores and specialistaudio dealers, the Bib Audiophile Centre contains all you need to keep your audio equipment in peak condition. Ref. 90-AE.

RRP £8.74 inc. VAT.
 Bib

[^0]: References

 1. Braunmuhl \& Weber. The Disturbing Effect
 of Non-linear Distortion, Akustiche Zeit, Vol.
 of Non-linear Distortion, Akustiche Zeit, Vo 2. Post Office Enigineers Yournal, Aprill 1939 . 3. Shorter. The Influence of High Order Distor-
 tion Products, Electronic Engineering, April tion Products, Electronic Engineering, April 4. Wigan. Technology, Apriil 1961. 5. Fryer. Inter-modulation Distortion Listening Tests. AES London Convention 1979., 6. Moir. The Sound of Transistors, Hi-Fi
 News, July 1976 . 7. Moir. Crossover Distortion in Class AB Am-
 plifiers. AES London Convention 1975.
[^1]: Whave received from Plessey an applicatio ote on the use of the TDA 1085A phas frequency or voltage feedback. It is available Estate, Kembrey Street, Swindon, Wilts SN2 6BA.

